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Why Fairness in Learning?

Translation from English to Turkish, then back to English injects gender bias.
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Why Fairness in Learning?

Training sets introduce cultural bais [Naous et al., 2023]
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Why Fairness in Learning?

The machine learning loop

Biased models enforce the bias of the world.
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Fairness in Learning: Overview

Goal

Identify and mitigate “bias” in ML-based decision making.

Source of bias:

Data
▶ imbalanced data (e.g., rare data, gender-biased data)
▶ incorrect data (e.g., noisy data, data with historical bias)

Model
▶ modeling error
▶ bias in loss

Credit: Richard Zemel
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Fairness in Learning: Definitions

Known definitions
▶ Demographic parity
▶ Equalized odds
▶ Equal opportunity
▶ Equal (weak) calibration
▶ Equal (strong) calibration
▶ Fair subgroup accuracy
▶ ...

Definitions are controversial and should be used depending on applications.
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Setup

Supervised learning for binary classification

f : a classifier

Y ∈ {0, 1}: an outcome

X: features

A ∈ {0, 1}: a protected attribute (e.g., “woman” or not)

Ŷ := f(X,A) ∈ {0, 1}: a prediction
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Demographic Parity

Definition (demographic parity)

A predictor Ŷ satisfies demographic parity with respect to the protected attribute A if

P

{
Ŷ = 1

∣∣∣ A = 0
}
= P

{
Ŷ = 1

∣∣∣ A = 1
}

Its variants appears in many papers.

Is this definition okay?

✓ Intuitive
✗ Actually not quite fair (in some common sense)

⋆ A classifier accepts qualified applicants in A = 0 but unqualified applicants in A = 1.
⋆ e.g., when we don’t have enough training samples for A = 1, this constraint forces to have

Ŷ = 1 for A = 1.

✗ This definition does not allow the perfect predictor Ŷ = Y .
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Better Fairness Definitions

Definition (equalized odd)

We say that a predictor Ŷ satisfies equalized odds with respect to the protected attribute A
and outcome Y if Ŷ and A are conditionally independent given Y , e.g.,

P

{
Ŷ = 1

∣∣∣ A = 0, Y = y
}
= P

{
Ŷ = 1

∣∣∣ A = 1, Y = y
}

∀y ∈ {0, 1}.

The definition is applicable to other setups, e.g., multi-class classification.

If y = 1, this constrains equalizes true positive rates (TPR) for both A = 0 and A = 1.

If y = 0, this constraint equalizes false positive rates (FPR) for both A = 0 and A = 1.

Is this enough?

✓ Intuitive – controlling TPR and FPR is common.
✗ The accuracy is equally high for all demographics → a model good at the majority will be

penalized.
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and outcome Y if Ŷ and A are conditionally independent given Y , e.g.,

P

{
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Better Fairness Definitions

Definition (equal opportunity)

We say that a binary predictor Ŷ satisfies equal opportunity with respect to A and Y if

P

{
Ŷ = 1

∣∣∣ A = 0, Y = 1
}
= P

{
Ŷ = 1

∣∣∣ A = 1, Y = 1
}
.

Suppose Y = 1 is the “advantaged” outcome.

At least provides equal oppertunities for the advantaged option!

Equal opportunity is weaker than equalized odd but typically allows stronger utility.
▶ Why weaker?
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Ŷ = 1

∣∣∣ A = 1, Y = 1
}
.

Suppose Y = 1 is the “advantaged” outcome.

At least provides equal oppertunities for the advantaged option!

Equal opportunity is weaker than equalized odd but typically allows stronger utility.
▶ Why weaker?

11 / 17



How to Build a Fair Classifier?
A Score-based Predictor

A score-based predictor

Ŷ = 1

(
R̂ > t

)
We consider a real valued score R̂ ∈ [0, 1], from which a classifier decides a label.

e.g., a neural network with a single output neuron: R = fNN(X)

Here, we suppose a pre-trained model is given and fixed; only change the threshold.

The equalized odds and equal opportunity definitions are characterized by true positive
and false positive rates, which is controlled by the threshold, i.e.,

(FPR) = P

{
R̂ > t

∣∣∣ A = a, Y = 0
}

(TPR) = P

{
R̂ > t

∣∣∣ A = a, Y = 1
}
.
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Receiver Operator Characteristic (ROC) Curves

A-conditional ROC Curves

Ca(t) :=
(
P

{
R̂ > t

∣∣∣ A = a, Y = 0
}

︸ ︷︷ ︸
false positive rate (FPR)

,P
{
R̂ > t

∣∣∣ A = a, Y = 1
}

︸ ︷︷ ︸
true positive rate (TPR)

)

Picture Credit: Ilyurek Kilic

t ↑ → FPR ↓ and TPR ↓.
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Algorithm for Equalized Odds

As two ROC curves are intersected, let an intersecting point be (FPR∗,TPR∗)

Find (t0, t1) such that C0(t0) = (FPR∗,TPR∗) and C1(t1) = (FPR∗,TPR∗).

Our classifier is Ŷ := 1

(
R̂ > ta

)
, i.e., an attribute specific ta.

✗ The accuracy is determined; when the accuracy is poor, no room to tune.
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Algorithm for Equal Opportunity

Recall that our classifier is Ŷ := 1

(
R̂ > ta

)
, where ta is a threshold for A = a.

The algorithm solves the following constraint minimization with some loss ℓ.

min
t0,t1

E ℓ(Ŷ , Y ) s.t. TPR0(Ŷ ) = TPR1(Ŷ )

15 / 17



Conclusion

Fairness definitions – no winner
1 Demographic parity
2 Equalized Odds
3 Equal Opportunity

Fairness algorithms
1 Algorithm for Equalized Odds
2 Algorithm for Equal Opertunity

There are neither “(ε, δ)-fairness” nor the proof of fairness; why?
▶ Proving the fairness may be impossible without clearly understanding on domain-specific

knowledge.
▶ Fairness through Awareness!
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