
Trustworthy Machine Learning
Differential Privacy 2

Sangdon Park

POSTECH

1 / 20



Contents from

(I guess) The first DP paper for deep learning

This is a complicated application of the basic DP, so we will briefly see high-level ideas.

2 / 20



Difference?

DP with convex loss
▶ Add noise on the final model
▶ Add noise before learning
▶ Strategies in convex loss treat learning process as a block box

DP with non-convex loss
▶ Consider learning process as a white box for the careful(?) characterization of parameter

updates.

3 / 20



Definition: Differential Privacy (Again)

Definition

A randomized mechanismM : D → R with domain D and range R satisfies (ε, δ)-differential
privacy if for any two “adjacent” inputs d, d′ ∈ D and for any subset of outputs S ⊆ R it
holds that

P {M(d) ∈ S} ≤ eεP
{
M(d′) ∈ S

}
+ δ.

Notations are slightly adjusted for learning.

“adjacent” inputs: two inputs differ in a single labeled example.

4 / 20



A Toy Example

Here, the mechanismM includes training an LLM over a dataset and querying a question.

At least we know that d′ has Bob’s information (and he likely has cancer due to the high
confidence).

5 / 20



Differentially Private SGD (DP-SGD)

Mt(d) :=
∑

i∈Lt
g̃t(xi) +N (0, σ2C2I): the Gaussian mechanism (when d := Lt)

Why clipping?

How to determine the noise level σ to satisfy (ε, δ)-DP?
6 / 20



Differentially Private SGD (DP-SGD)

Mt(d) :=
∑

i∈Lt
g̃t(xi) +N (0, σ2C2I): the Gaussian mechanism (when d := Lt)

Why clipping?

How to determine the noise level σ to satisfy (ε, δ)-DP?
6 / 20



Differentially Private SGD (DP-SGD)

Mt(d) :=
∑

i∈Lt
g̃t(xi) +N (0, σ2C2I): the Gaussian mechanism (when d := Lt)

Why clipping?

How to determine the noise level σ to satisfy (ε, δ)-DP?
6 / 20



Differentially Private SGD (DP-SGD)

Mt(d) :=
∑

i∈Lt
g̃t(xi) +N (0, σ2C2I): the Gaussian mechanism (when d := Lt)

Why clipping?

How to determine the noise level σ to satisfy (ε, δ)-DP?
6 / 20



Main Ingredient: Norm Clipping

Norm Clipping

g̃t(xi)←
gt(xi)

max
(
1, ∥gt(xi)∥2

C

)
Maintain the norm of gradients to be at most C, i.e.,

g

max
(
1, ∥g∥2C

) =

{
g if ∥g∥2 ≤ C
C

∥g∥2g if ∥g∥2 > C

Limit “privacy loss” at each learning iteration for a tighter the DP guarantee
▶ If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,

privacy leaking)
▶ Without clipping, we need to add noise proportional to the largest norm of gradients.
▶ With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.
▶ Price to pay: clipping may hurt accuracy

Clipping before averaging
▶ may provide a tighter DP guarantee (why?)

7 / 20



Main Ingredient: Norm Clipping

Norm Clipping

g̃t(xi)←
gt(xi)

max
(
1, ∥gt(xi)∥2

C

)
Maintain the norm of gradients to be at most C, i.e.,

g

max
(
1, ∥g∥2C

) =

{
g if ∥g∥2 ≤ C
C

∥g∥2g if ∥g∥2 > C

Limit “privacy loss” at each learning iteration for a tighter the DP guarantee
▶ If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,

privacy leaking)
▶ Without clipping, we need to add noise proportional to the largest norm of gradients.
▶ With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.
▶ Price to pay: clipping may hurt accuracy

Clipping before averaging
▶ may provide a tighter DP guarantee (why?)

7 / 20



Main Ingredient: Norm Clipping

Norm Clipping

g̃t(xi)←
gt(xi)

max
(
1, ∥gt(xi)∥2

C

)
Maintain the norm of gradients to be at most C, i.e.,

g

max
(
1, ∥g∥2C

) =

{
g if ∥g∥2 ≤ C
C

∥g∥2g if ∥g∥2 > C

Limit “privacy loss” at each learning iteration for a tighter the DP guarantee
▶ If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,

privacy leaking)
▶ Without clipping, we need to add noise proportional to the largest norm of gradients.
▶ With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.
▶ Price to pay: clipping may hurt accuracy

Clipping before averaging
▶ may provide a tighter DP guarantee (why?)

7 / 20



Privacy Analysis: Is DP-SGD DP?

To this end, bound the moments of privacy loss in two steps!

1 Bounding the moment for each learning iteration

2 Bounding the moments for all learning iterations

Then, what is

privacy loss? An surrogate for measuring DP.

the moments of the privacy loss?

8 / 20



Measuring DP: Privacy Loss

Privacy Loss

ℓ(o;M, aux, d, d′) := log
P {M(aux, d) = o}
P {M(aux, d′) = o}

d, d′ ∈ D: neighboring datasets

M: a mechanism

aux: an auxiliary input, e.g., previous gradients

o ∈ R: an outcome

How to capture the properties of the privacy loss?
▶ Consider o as a random variable, i.e., o ∼M(aux, d).
▶ Analyze the privacy loss via moments.

9 / 20



Measuring DP: Moments of Privacy Loss

Moment

αM(λ) = max
aux,d,d′

αM(λ; aux, d, d′) where

αM(λ; aux, d, d′) := lnEo∼M(aux,d)e
λℓ(o;M,aux,d,d′)

The moment-generating function (or moments) of a real-valued random variable X,
denoted by MX(λ), captures the useful properties of the corresponding distribution.

MX(λ) := E{eλX}

= E

{
1 + λX +

λ2X2

2!
+

λ3X3

3!
+ · · ·

}
= 1 + λE{X}+ λ2

E{X2}
2!

+
λ3
E{X3}
3!

+ · · ·

▶ To obtain mean, differentiating MX(λ) once with respect to λ and setting λ = 0.

10 / 20



Measuring DP: Moments of Privacy Loss

Moment

αM(λ) = max
aux,d,d′

αM(λ; aux, d, d′) where

αM(λ; aux, d, d′) := lnEo∼M(aux,d)e
λℓ(o;M,aux,d,d′)

The moment-generating function (or moments) of a real-valued random variable X,
denoted by MX(λ), captures the useful properties of the corresponding distribution.

MX(λ) := E{eλX}

= E

{
1 + λX +

λ2X2

2!
+

λ3X3

3!
+ · · ·

}
= 1 + λE{X}+ λ2

E{X2}
2!

+
λ3
E{X3}
3!

+ · · ·

▶ To obtain mean, differentiating MX(λ) once with respect to λ and setting λ = 0.

10 / 20



From the Moments to the DP Guarantee

Theorem

For any ε > 0, the mechanismM is (ε, δ)-DP where

δ = min
λ

eαM(λ)−λε.

Connect (ε, δ)-DP to αM(λ)

Given δ, if we know the moments αM(λ), the privacy parameter ε is determined.

How to compute or bound αM(λ)?

11 / 20



From the Moments to the DP Guarantee: A Proof Sketch
Recall the privacy loss ℓ

ℓ(o;M, aux, d, d′) := ln
P {M(aux, d) = o}
P {M(aux, d′) = o}

Let an (bad) event B := ℓ(o; ·) ≥ ε
For any S, we have

P {M(d) ∈ S} = P {M(d) ∈ S ∩Bc}+P {M(d) ∈ S ∩B}
≤ eεP

{
M(d′) ∈ S ∩Bc

}
+P {M(d) ∈ S ∩B}

≤ eεP
{
M(d′) ∈ S

}
+P {M(d) ∈ B}

≤ eεP
{
M(d′) ∈ S

}
+ eαM(λ)−λε,

Here, the last inequality holds since

Po∼M(d) {ℓ(o; ·) ≥ ε} = Po∼M(d)

{
eλℓ(o;·) ≥ eλε

}
≤
Eo∼M(d){eλℓ(o;·)}

eλε
≤ eαM(λ)−λε,

where the first inequality holds due to the Markov’s inequality and the last inequality holds due
to the definition of αM.

12 / 20



Back to Mechanisms in DP-SGD

One-step Mechanism

Mt(d) :=
∑
i∈Lt

g̃t(xi) +N (0, σ2C2I)

This is the Gaussian mechanism along with sampling from d to get Lt.

It is DP (see Lemma 3 in this paper).

However, this is a mechanism for at a given time step.

Multi-step Mechanism

M(d) ∝
T∑
t=1

(−ηt)Mt(d)

Recall the DP-SGD update rule, i.e., θ0 ←
∑T

t=1(−ηt)Mt(d)

This is the composition of the Gaussian mechanisms.

Is it DP?
13 / 20



Composibility Theorem

Theorem

Suppose that a mechanismM consists of a sequence of adaptive mechanisms,
i.e.,M := (M1, . . . ,MT ), whereMt : R1 × · · · × Rt−1 ×D → Rt. Then, for any λ > 0

αM(λ) ≤
T∑
t=1

αMt(λ)

“Adaptive” mechanism: a mechanism that depends on all previous mechanisms

aux2 =M1(aux1, d)

aux3 =M2(aux2, d) =M2(M1(aux1, d), d)

. . .

M: e.g., T -step gradient aggregation

Mt: e.g., one-step gradient aggregation

This theorem shares similar philosophy as a union bound.
14 / 20



Composibility Theorem: A Proof Sketch 1/2

M1:t := (M1, . . . ,Mt)

o1:t := (o1, . . . , ot)

For any neighboring datasets d, d′ ∈ D and outputs o1:T , we have

ℓ(o1:T ;M1:T , o1:T−1, d, d
′) = ln

P {M1:T (o1:T−1, d) = o1:T }
P {M1:T (o1:T−1, d′) = o1:T }

= ln

T∏
t=1

P {Mt(o1:t−1, d) = ot | M1:t−1(o1:t−2, d) = o1:t−1}
P {Mt(o1:t−1, d′) = ot | M1:t−1(o1:t−2, d′) = o1:t−1}

=

T∑
t=1

ln
P {Mt(o1:t−1, d) = ot | M1:t−1(o1:t−2, d) = o1:t−1}
P {Mt(o1:t−1, d′) = ot | M1:t−1(o1:t−2, d′) = o1:t−1}

=

T∑
t=1

ℓ(ot;Mt, o1:t−1, d, d
′).

15 / 20



Composibility Theorem: A Proof Sketch (2/2)
Bound αM(λ) = αM1:T

(λ) as follows

ln E
o′1:T∼M1:T (·)

{
eλℓ(o

′
1:T ;M1:T ,d,d′)

}
= ln E

o′1:T∼M1:T (·)

{
eλ

∑T
t=1 ℓ(o

′
t;Mt,o1:t−1,d,d′)

}
= ln E

o′1:T∼M1:T (·)

{
T∏
t=1

eλℓ(o
′
t;Mt,o1:t−1,d,d′)

}

= ln
T∏
t=1

E
o′t∼Mt(·)

{
eλℓ(o

′
t;Mt,o1:t−1,d,d′)

}
= ln

T∏
t=1

eαMt (λ;o1:t−1,d,d′)

=

T∑
t=1

αMt(λ; o1:t−1, d, d
′).

By taking maximum over aux, d′ and d for both sides, we have the inequality.
16 / 20



Main DP Theorem for DP-SGD

Theorem

There exist constants c1 and c2 so that given the sampling probability q = L/N and the
number of steps T , for any ε < c2q

2T , Algorithm 1 is (ε, δ)-differentially private for any δ > 0
if we choose

σ ≥ c2
q
√
T log 1/δ

ε

Provide intuition on tuning nobs.

ε ∝ T : privacy-accuracy trade-off

With the known “strong composition” (i.e., a baseline), we need

σ = Ω

(
q
√
T log(1/δ)log(T/δ)

ε

)
▶ This is one without clipping.
▶ This difference will be justified in experiments.

17 / 20



Practical Guideline to Compute ε

The moments bound:

αM(λ) ≤
T∑
i=1

αMi(λ)

For the Gaussian mechanism with random sampling

αMi(λ) = logmax

(
Ez∼µ0

(
µ0(z)

(1− q)µ0(z) + qµ1(z)

)λ

,Ez∼µ

(
µ(z)

µ0(z)

)λ
)
,

where µ0 := N (0, σ2), µ1 := N (1, σ2), and µ(z) := (1− q)µ0(z) + qµ1(z).

From the “Moment-DP” theorem,M is (ε, δ)-DP if

min
λ

eαM(λ)−λε ≤ min
λ

e
∑T

i=1 αMi
(λ)−λε ≤ δ.

▶ If T, q, σ, and δ are given and conduct greedy search over λ ≤ 32, we can compute ε.

18 / 20



(Proposed) Moments Accountant v.s. (Standard) Strong Composition

How about the comparison of model accuracy? Clipping may hurt accuracy.

19 / 20



(Proposed) Moments Accountant v.s. (Standard) Strong Composition

How about the comparison of model accuracy? Clipping may hurt accuracy.

19 / 20



Conclusion

The proposed “Moments Accountant” has a stronger DP guarantee.
▶ Why? partially due to practical treatments on clipping

Nice connection between a moments bound and the DP guarantee.

20 / 20


