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Motivation

o Certified removal [Guo et al., 2020] assumes strongly convex loss

@ Zhang et al. [2024] provides a direct extention of certified removal [Guo et al., 2020]
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Definition: Certified Unlearning

Definition ((e, §)-Certified Unlearning)
Let

@ D be a training set,

@ D, C D be an unlearning set,
e D, =D\ D, be a retain set,
@ 71 be a hypothesis space,

@ A be a learning algorithm.

Then, U is an e-0 certified unlearning algorithm if and only if for all 7 C #H, we have

P{U(D, Dy, A(D)) € T} < &P{A(D,) € T} + 6
P{A(D,) € T} < eP{U(D, Dy, A(D)) € T} + 6.
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Key Theorem for Certified Unlearning

Theorem

Let
e w* = arg minyey L(w, D,),
@ W = Uremove(w*, Dy, D), and
o ||lw— w2 <A.

Then,

Uhide(w*, D, D) =w+Y
is an e-0 certified unlearning if Y ~ N(0,0%1) and o > %, /2In 125,

@ The key next step is bounding A.

» With convex models, boudning A seems feasible.
» How about non-convex models?
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Algorithm

Certified Unlearning without Convexity

Algorithm: A Single-Step Newton Update
B* = =w* — H i VL(w*, Dy)

@ H: a set of models

@ D: an original training set

@ D, C D: an unlearned set

@ D, =D\ D,: a retained set

e w* = arg minyey L(w,D): an optimal trained model — could be a local optimum

e w* = arg minyey L(w,D;): an optimal unlearned model — could be a local optimum

@ w: an estimated unlearned model — why? due to the Taylor expansion of VL at w*, i.e.,

VL(w*,Dy) = VL(w*, Dy) + Hy= (0" —w")
Thus, 0 = VL(@0*, D,) = VL(w*, D,) + Hy (0" — w*) implies the update rule.

5/15



Main Direction

Certified Unlearning without Convexity

Bounding the approximation error ||[w — @w*||2. To this end, we need following assumptions.

Assumption 1

A loss function ¢(w, z,y) has an L-Lipschitz gradient in w, i.e.,

IVL(w, D)2 < L.

Assumption 2

A loss function ¢(w, z,y) has an M-Lipschitz Hessian in w, i.e.,

1w — Hurll2 < Mjw —w'||2.
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Approximation Error

Certified Unlearning without Convexity

Lemma

We have the following approximation error (given previously defined notations):

2+ [lw* — @3

. M,
o — @z < S| H?

@ Note that the proof of this lemma does not need global optimality.
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Bounding the Norm of the Inverse Hessian

Certified Unlearning without Convexity

Update after Local Convex Approximation

W = w* — (Hy + M) 7IVL(w*, D)

@ Intuitively, we approximatly convert the non-convex objective to the strongly convex one.

> In general, | H, || is arbitrarly large.

» Add a small diagonal, i.e., ||(Hy + M) 71|
objective, i.e., L(w,D,) + 3|w|3

> At w*, the regularized objective can be strongly convex for some A.

2, equivalent to the Hessian of the regularized
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*

Bounding the Norm of w* — w

Certified Unlearning without Convexity

Constrained Learning

w* =arg min L(w,D) and @*=arg min L(w,

lwl|2<C lwll2<C
@ Due to the constraint, we have
[w* —w*[[2 < (w2 + [| — @2 < 2C

e If |D,| is quite small, this makes sense, i.e., D ~ D, = w* ~ 0*.

@ (' also encodes the distance between D and D,..

D,)
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Bounding the Norm of w* — w*

Certified Unlearning without Convexity
Constrained Learning

w* =arg min L(w,D) and @w" =arg min L(w,D.
%mmgv( ) ammgr( r)

@ Due to the constraint, we have
[w* —w*[[2 < (w2 + [| — @2 < 2C

e If |D,| is quite small, this makes sense, i.e., D ~ D, = w* ~ 0*.
@ (' also encodes the distance between D and D,..
@ Can you criticize?

» Can we actually have small C' for neural networks (as ||z||2 is proportional to the dimension
of z)?
>
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Approximation Error Bound
Main Theorem of This Paper

Theorem
We have 2C(MC + \)
- +
— < =" = 1 7Y
I - @l < 55—
@ Recall that

> w* = argminHwHQSC
» 0 =w* — (Hy + M) TIVL(w*, D,) with A > || Hy-
> Wt = arg min”wﬂzgc ,C(w*,DT)
> Amin: the smallest eigenvalue of H,,«
@ A few notes:

2

» Can we unlearn with certification from any original model?
» Is this data-dependent bound?
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Efficient Hessian Computation

Proposition

Given x i.i.d. tained samples {X1,..., X}, we have {Hy ,...,H\} of the Hessian
Hy« + M, where H; ) = V2L(w*, X;) + M, let

By H. 3
—1 A —1
H,y =1+ (I T > H, =y,

- g1
where Hyy = I and ||V2(w*,z)|| < H for all x € D,. Then, —# is an asymptotic unbiased
estimator of the inverse Hessian (Hy» + \I)~1.

@ Reduces sample complexity, i.e., we need only s samples instead of n samples.
o Is this effective with “data parallelization”?
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Membership Inference Attack

Experiment

Method MLP & MNIST AINICNN & CIFAR-10 ResNet18 & SVHN
Relearn T Attack Acc  Attack AUC | Relearn T Attack Acc  Attack AUC | Relearn T Attack Acc  Attack AUC
Retrain 25 93.10 £033 95.16 + 047 17 79.82 +£035 88.71 £043 7 90.47 £0.14 93.07 £0.27
Fine Tune 17 93.65 £023 95.37 £ 046 14 79.42 £1.05 88.13 £0.66 7 90.63 £032 92.96 +0.31
Neg Grad 21 93.73 £045 9542 +043 17 78.63 £123 87.58 +£0.96 9 90.02 £0.13 92.89 +0.22
Fisher 21 93.85 +£022 95.37 £ 051 14 79.70 +£1.03 88.58 £0.76 9 90.47 £ 084 93.13 +0.19
L-CODEC 20 95.05 +£0.05 9531 +o0.21 14 83.60 + 062 92.18 +0.17 7 93.22 +035 93.75 + 054
Certified 24 93.22 +046 95.28 +0.50 25 78.00 +1.18 87.22 +1.13 9 88.63 +1.58 92.18 + 1.16

o Attack Acc (= Attack F1 score) is as good as retraining.
@ Here, Attack means membership inference attacks, e.g.,

> For {(z;,b;)} where z; := (x;,y;) and b; € {“2; € Dyain”, “2i € Dunlearn” }, an attacker h
wins if h(z;) correctly predicts b;
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Unlearning Time

Experiment
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o Efficient — note that the y-axis is log-scale.
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Conclusion

@ Proposes a certified unlearning method for deep models.

> (I guess) Mainly thanks to the bounded optimal solutions, i.e.,
and @* =arg min L(w,D,).

w* =arg min L(w,D)
lwll2<C lwl2<C

» The above implies
lw* — %2 < 2C.

@ How can we minimize C?

» Recall that min”wﬂzgc E(w,D)

2C(MCH+X) 1.25
» Recall that o 2 m 21n S

» Larger C' — larger noise o — accruacy drop
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