Trustworthy Machine Learning Certified Adversarial Learning

Sangdon Park

POSTECH

Motivation

 Heuristic adversarial learning often fails against powerful adversaries with the same maximum perturbation ε.

		CIFAR10				
Simple	Wide	Simple		Simple	Wide	
Natural 92.7%				79.4%		
FGSM 27.5%	32.7%	90.9%	95.1%	51.7%		
PGD 0.8%	3.5%	0.0%	0.0%	43.7%		
(a) Standard training		(b) FGSM	training	(c) PGD training		

- ▶ ε -FGSM training and ε -FGSM attacks: 90.9% accuracy :)
- ε -FGSM training and ε -PGD attacks: 0.0% accuracy :(

Motivation

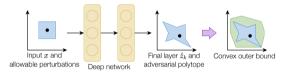
 Heuristic adversarial learning often fails against powerful adversaries with the same maximum perturbation ε.

		CIFAR10				
Simple	Wide	Simple	Wide	Simple	Wide	
Natural 92.7%				79.4%		
FGSM 27.5%	32.7%			51.7%		
PGD 0.8%	3.5%	0.0%	0.0%	43.7%		
(a) Standard training		(b) FGSM	training	(c) PGD training		

- ▶ ε -FGSM training and ε -FGSM attacks: 90.9% accuracy :)
- ε -FGSM training and ε -PGD attacks: 0.0% accuracy :(
- Can we learn a classifier robust to any small perturbations?

Certified Adversarial Learning

• Convex outer approximation [Kolter and Wong, 2017]



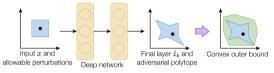
✓ Certified!

$$\max_{\|\delta\|_{\infty} \le \varepsilon} \ell(f, x + \delta, y) \le U(\varepsilon, f, x, y)$$

★ Essentially linear classification over overly approximated "convex polytope"-points
✗ Not scalable :(

Certified Adversarial Learning

• Convex outer approximation [Kolter and Wong, 2017]



✓ Certified!

$$\max_{\|\delta\|_{\infty} \leq \varepsilon} \ell(f, x + \delta, y) \leq U(\varepsilon, f, x, y)$$

* Essentially linear classification over overly approximated "convex polytope"-points

- ✗ Not scalable :(
- Randomized smoothing: a post-hoc method

Certified Adversarial Robustness via Randomized Smoothing

Jeremy Cohen¹ Elan Rosenfeld¹ J. Zico Kolter¹²

- ✓ (Probably) Certified!
- Scalable!

A Goodness Definition: Robustness

"Hard" Robustness

$$\forall \delta \text{ s.t } \|\delta\|_p \leq \varepsilon, \ f(x+\delta) = f(x)$$

• $f: \mathcal{X} \to \mathcal{Y}$: a hard-classifier

A Goodness Definition: Robustness

"Hard" Robustness

$$\forall \delta \text{ s.t } \|\delta\|_p \leq \varepsilon, \ f(x+\delta) = f(x)$$

- $f: \mathcal{X} \to \mathcal{Y}$: a hard-classifier
- The constraint on the perturbation δ can be more general.

A Goodness Definition: Robustness

"Hard" Robustness

$$\forall \delta \text{ s.t } \|\delta\|_p \leq \varepsilon, \ f(x+\delta) = f(x)$$

- $f: \mathcal{X} \to \mathcal{Y}$: a hard-classifier
- \bullet The constraint on the perturbation δ can be more general.
- It does not matter whether f(x) is correct.

A Certified Method: Randomized Smoothing

Smoothed Classifier

$$g(x) \coloneqq \arg\max_{c \in \mathcal{Y}} \mathbb{P}\left\{f(x+\delta) = c\right\} \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

- $g: \mathcal{X} \to \mathcal{Y}$: a smoothed classifier
- σ is related to the maximum perturbation ε .
- Easier than convex outer approximation

Binary Classification

Theorem

Suppose that $\underline{p_A} \in (0.5, 1]$ satisfies

$$\mathbb{P}\left\{f(x+\delta)=c_A\right\}=p_A\geq \underline{p_A} \quad \textit{where} \quad \delta\sim \mathcal{N}(0,\sigma^2 I).$$

Then, we have
$$g(x + \delta) = c_A$$
 if

$$\|\delta\|_2 < \sigma \Phi^{-1}(\underline{p_A}).$$

- c_A : the most probable class when f classifies $x + \varepsilon$
- p_A : the chance that f classifies $x + \delta$ by c_A
- $\underline{p_A}$: the lower bound of p_A
- $\Phi^{-1}:$ the inverse of the standard Gaussian CDF

Binary Classification

Theorem

Suppose that $\underline{p_A} \in (0.5, 1]$ satisfies

$$\mathbb{P}\left\{f(x+\delta)=c_A\right\}=p_A\geq \underline{p_A} \quad \textit{where} \quad \delta\sim \mathcal{N}(0,\sigma^2 I).$$

Then, we have
$$g(x + \delta) = c_A$$
 if

$$\|\delta\|_2 < \sigma \Phi^{-1}(\underline{p_A}).$$

- c_A : the most probable class when f classifies $x + \varepsilon$
- p_A : the chance that f classifies $x + \delta$ by c_A
- $\underline{p_A}$: the lower bound of p_A
- $\Phi^{-1}:$ the inverse of the standard Gaussian CDF
- Here, we assume that we can compute p_A .

Binary Classification

Theorem

Suppose that $\underline{p_A} \in (0.5, 1]$ satisfies

$$\mathbb{P}\left\{f(x+\delta)=c_A\right\}=p_A\geq \underline{p_A} \quad \textit{where} \quad \delta\sim \mathcal{N}(0,\sigma^2 I).$$

Then, we have
$$g(x+\delta) = c_A$$
 if

$$\|\delta\|_2 < \sigma \Phi^{-1}(\underline{p_A}).$$

- c_A : the most probable class when f classifies $x + \varepsilon$
- p_A : the chance that f classifies $x + \delta$ by c_A
- p_A : the lower bound of p_A
- $\Phi^{-1}:$ the inverse of the standard Gaussian CDF
- Here, we assume that we can compute p_A .
- We can compute the *data-dependent* maximum perturbation to be robust!

Robustness Guarantee: A Proof Sketch (1/3) Binary Classification

- Fix a perturbation δ .
- From the definition of g, we have

$$g(x + \delta) \coloneqq \arg \max_{c} \mathbb{P} \{ f(x + \varepsilon + \delta) = c \} \quad \text{where} \quad \varepsilon \sim \mathcal{N}(0, \sigma^{2}I)$$
$$= \arg \max_{c} \mathbb{P} \{ f(x + \varepsilon') = c \} \quad \text{where} \quad \varepsilon' \sim \mathcal{N}(\delta, \sigma^{2}I)$$
$$\stackrel{?}{=} c_{A}$$

(1)

Robustness Guarantee: A Proof Sketch (1/3) Binary Classification

• Fix a perturbation δ .

g

• From the definition of g, we have

$$(x + \delta) \coloneqq \arg \max_{c} \mathbb{P} \{ f(x + \varepsilon + \delta) = c \} \quad \text{where} \quad \varepsilon \sim \mathcal{N}(0, \sigma^{2}I)$$
$$= \arg \max_{c} \mathbb{P} \{ f(x + \varepsilon') = c \} \quad \text{where} \quad \varepsilon' \sim \mathcal{N}(\delta, \sigma^{2}I)$$
$$\stackrel{?}{=} c_{A} \tag{1}$$

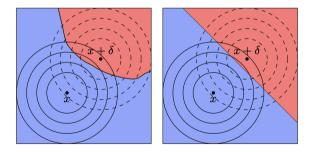
- We wish to prove (1) for any classifier f under some condition. How?
 - ► *f* can be any classifier, which is not easy to analyze.
 - Consider a surrogate classifier that bounds the probability and is easier to analyze, e.g.,

$$\mathbb{P}\left\{f(x+\varepsilon')=c_A\right\} \geq \min_{f':\mathbb{P}\left\{f'(x+\varepsilon)=c_A\right\}\geq \underline{p_A}} \mathbb{P}\left\{f'(x+\varepsilon')=c_A\right\} > \frac{1}{2} \quad \Longrightarrow \quad g(x+\delta)=c_A.$$

Robustness Guarantee: A Proof Sketch (2/3) Binary Classification

• Interestingly, f^* is linear (due to the Neyman-Perason lemma), where

$$f^* = \arg \min_{f': \mathbb{P}\{f'(x+\varepsilon)=c_A\} \ge \underline{p_A}} \mathbb{P}\left\{f'(x+\varepsilon')=c_A\right\}$$



There could be a non-linear classifier but we can find a corresponding linear classifier with the same mininum value.

Robustness Guarantee: A Proof Sketch (3/3) Binary Classification

• We have a closed-form solution of f^* :

$$f^*(x') \coloneqq \begin{cases} c_A & \text{ if } \delta^T(x'-x) \le \sigma \|\delta\|_2 \Phi^{-1}(\underline{p}_A) \\ c_B & \text{ otherwise} \end{cases}.$$

• This (non-trivially) implies the following mininum value:

$$\min_{f':\mathbb{P}\{f'(x+\varepsilon)=c_A\}\geq\underline{p_A}}\mathbb{P}\left\{f'(x+\varepsilon')=c_A\right\}=\mathbb{P}\left\{f^*(x+\varepsilon')=c_A\right\}=\Phi\left(\Phi^{-1}(\underline{p_A})-\frac{\|\delta\|_2}{\sigma}\right)$$

• The above probability should be larger than $\frac{1}{2}$, *i.e.*,

$$\Phi\left(\Phi^{-1}(\underline{p_A}) - \frac{\|\delta\|_2}{\sigma}\right) > \frac{1}{2} \implies \|\delta\|_2 < \sigma \Phi^{-1}(\underline{p_A}).$$

Multi-class Classification

Theorem

Suppose that $\underline{p_A}, \overline{p_B} \in [0,1]$ satisfy

$$\mathbb{P}\left\{f(x+\varepsilon)=c_A\right\} \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \neq c_A} \mathbb{P}\left\{f(x+\varepsilon)=c\right\}.$$

Then, we have $g(x + \delta) = c_A$ for all $\|\delta\|_2 < R$, where

$$R \coloneqq \frac{\sigma}{2} \left(\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}) \right).$$

- c_A : the most probable label (with probability at least p_A)
- c_B := arg max_{c≠c_A} P {f(x + ε) = c}: the second-most probable label (with probability at most p_B)

Robustness Guarantee: An Alternative

Multi-class Classification

Theorem

Suppose that we have class A and B that satisfy

$$\max_{k} \mathbb{P} \left\{ f_k(x+\varepsilon) \right\} = p_A \ge p_B = \max_{k \ne A} \mathbb{P} \left\{ f_k(x+\varepsilon) \right\}.$$

Then, we have $g(x+\delta) = A$ for all $\|\delta\|_2 < R$, where

$$R \coloneqq \frac{\sigma}{2} \left(\Phi^{-1}(p_A) - \Phi^{-1}(p_B) \right).$$

- \bullet Consider a soft classifier $f_k: \mathcal{X} \to [0,1]$ for class k
- A smoothed classifier $g_k(x) \coloneqq \arg \max_k \mathbb{P}_{\varepsilon} \{ f_k(x + \varepsilon) \}$

Robustness Guarantee: An <u>Alternative</u> Proof Sketch (1/2)

- Let $f_k : \mathbb{R}^n \to [0,1]$: a <u>soft</u> classifier for class k
- Let $\tilde{f}_k : \mathcal{X} \to [0,1]$: a smoothed classifier for class k, i.e.,

$$\tilde{f}_k(x) \coloneqq (f_k * \mathcal{N}(0, \sigma I))(x) = \int_{\mathbb{R}^n} f_k(t) \frac{\exp\left(-\frac{1}{2\sigma^2} \|x - t\|^2\right)}{(2\pi\sigma^2)^n} dt = \mathbb{P}_{\varepsilon}\{f_k(x + \varepsilon)\}$$

• The convolution of f_k and $\mathcal{N}(0,\sigma I)$, a.k.a. the Weierstrass transform of f_k

Robustness Guarantee: An <u>Alternative</u> Proof Sketch (1/2)

- Let $f_k : \mathbb{R}^n \to [0,1]$: a <u>soft</u> classifier for class k
- Let $\tilde{f}_k:\mathcal{X}\to [0,1]$: a smoothed classifier for class k, i.e.,

$$\tilde{f}_k(x) \coloneqq (f_k * \mathcal{N}(0, \sigma I))(x) = \int_{\mathbb{R}^n} f_k(t) \frac{\exp\left(-\frac{1}{2\sigma^2} \|x - t\|^2\right)}{(2\pi\sigma^2)^n} dt = \mathbb{P}_{\varepsilon}\{f_k(x + \varepsilon)\}$$

- The convolution of f_k and $\mathcal{N}(0,\sigma I)$, a.k.a. the Weierstrass transform of f_k
- Let p_A is the most-probable class probability assigned by the smoothded classifier \tilde{f}_k , *i.e.*,

$$p_A = \tilde{f}_A(x)$$
 where $A = \arg \max_k \tilde{f}_k(x)$

• Let p_B is the class probability by \tilde{f}_k such that $A \neq B$ and less than p_A , *i.e.*,

$$p_B = \tilde{f}_B(x) \le p_A.$$

Robustness Guarantee: An <u>Alternative</u> Proof Sketch (1/2)

- Let $f_k : \mathbb{R}^n \to [0,1]$: a <u>soft</u> classifier for class k
- Let $\tilde{f}_k:\mathcal{X}\to [0,1]$: a smoothed classifier for class k, i.e.,

$$\tilde{f}_k(x) \coloneqq (f_k * \mathcal{N}(0, \sigma I))(x) = \int_{\mathbb{R}^n} f_k(t) \frac{\exp\left(-\frac{1}{2\sigma^2} \|x - t\|^2\right)}{(2\pi\sigma^2)^n} dt = \mathbb{P}_{\varepsilon}\{f_k(x + \varepsilon)\}$$

- The convolution of f_k and $\mathcal{N}(0,\sigma I)$, a.k.a. the Weierstrass transform of f_k
- Let p_A is the most-probable class probability assigned by the smoothded classifier \tilde{f}_k , *i.e.*,

$$p_A = \tilde{f}_A(x)$$
 where $A = \arg \max_k \tilde{f}_k(x)$

• Let p_B is the class probability by \tilde{f}_k such that $A \neq B$ and less than p_A , *i.e.*,

$$p_B = \tilde{f}_B(x) \le p_A$$

• Let Φ be a CDF of a Gaussian distribution, *i.e.*,

$$\Phi(a) \coloneqq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} \exp\left(-\frac{1}{2}s^2\right) \mathrm{d}s$$

Robustness Guarantee: An <u>Alternative</u> Proof Sketch (2/2)

Then, we have the robustness guarantee due to the following reasons:

• For any perturbation δ and any class k, we have

$$\left|\Phi^{-1}\left(\tilde{f}_k(x)\right) - \Phi^{-1}\left(\tilde{f}_k(x+\delta)\right)\right| \le \frac{1}{\sigma} \|\delta\|_2.$$

• $\Phi^{-1} \circ \tilde{f}$ is $\frac{1}{\sigma}$ -Lipschitz (check out the paper)

• Consider any adversarial perturbation $\bar{\delta}$ that changes the classification result, *i.e.*,

$$\tilde{f}_A(x+\bar{\delta}) \leq \tilde{f}_B(x+\bar{\delta}) \quad \text{for some } B \neq A$$

• For $\bar{\delta}$, we have

$$\begin{aligned} \frac{1}{\sigma} \|\bar{\delta}\|_2 &\ge \Phi^{-1} \left(\tilde{f}_A(x) \right) - \Phi^{-1} \left(\tilde{f}_A(x+\bar{\delta}) \right) \text{ and } \frac{1}{\sigma} \|\bar{\delta}\|_2 &\ge \Phi^{-1} \left(\tilde{f}_B(x+\bar{\delta}) \right) - \Phi^{-1} \left(\tilde{f}_B(x) \right) \\ \Rightarrow \frac{2}{\sigma} \|\bar{\delta}\|_2 &\ge \left\{ \Phi^{-1} \left(\tilde{f}_A(x) \right) - \Phi^{-1} \left(\tilde{f}_B(x) \right) \right\} + \left\{ \Phi^{-1} \left(\tilde{f}_B(x+\bar{\delta}) \right) - \Phi^{-1} \left(\tilde{f}_A(x+\bar{\delta}) \right) \right\} \\ &\ge \Phi^{-1} \left(\tilde{f}_A(x) \right) - \Phi^{-1} \left(\tilde{f}_B(x) \right) = \Phi^{-1} \left(p_A \right) - \Phi^{-1} \left(p_B \right) \end{aligned}$$

Prediction

function PREDICT $(f, \sigma, x, n, \alpha)$ counts \leftarrow SAMPLEUNDERNOISE (f, x, n, σ) $\hat{c}_A, \hat{c}_B \leftarrow$ top two indices in counts $n_A, n_B \leftarrow$ counts $[\hat{c}_A]$, counts $[\hat{c}_B]$ if BINOMPVALUE $(n_A, n_A + n_B, 0.5) \leq \alpha$ return \hat{c}_A else return ABSTAIN

• Recall the randomized smoothing method:

$$g(x) \coloneqq \arg \max_{c \in \mathcal{Y}} \mathbb{P} \left\{ f(x + \delta) = c \right\} \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

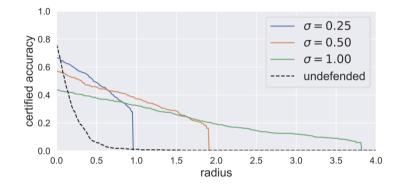
- **1** Draw *n* noisy perturbations $\delta_1, \ldots, \delta_n$.
- **2** Empirically compute the most probable and the second most probably labels, *i.e.*, \hat{c}_A and \hat{c}_B .
- **③** If \hat{c}_A is drawn from the binomial distribution with p = 0.5, return \hat{c}_A .
- Alternatively, you can use the (our-favorite) binomial tail bound.

Certification in Evaluation

certify the robustness of g around x function CERTIFY(f, σ , x, n_0 , n, α) counts0 \leftarrow SAMPLEUNDERNOISE(f, x, n_0 , σ) $\hat{c}_A \leftarrow$ top index in counts0 counts \leftarrow SAMPLEUNDERNOISE(f, x, n, σ) $\underline{p}_A \leftarrow$ LOWERCONFBOUND(counts[\hat{c}_A], n, $1 - \alpha$) if $\underline{p}_A > \frac{1}{2}$ return prediction \hat{c}_A and radius $\sigma \Phi^{-1}(\underline{p}_A)$ else return ABSTAIN

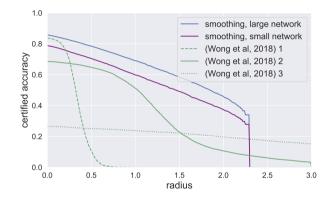
- Compute p_A via the binomial tail bound.
- **2** Compute the robust radius, *i.e.*, $\sigma \Phi^{-1}(p_A)$.
- $\hbox{ o If (a desired radius)} \leq \sigma \Phi^{-1}(\underline{p_A}) \hbox{, then "certified".}$

Results: ImageNet



- Classifier: ResNet-50
- undefended: a classifier with heuristic adversarial training (using ℓ_2 adversarial attacks)
- perturbation: $\|\delta\|_2 \leq (radius) = (maximum perturbation size)$

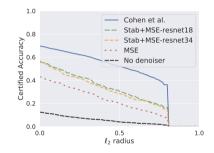
Results: Comparison



- (maybe) on MNIST
- Baseline: deterministic robustness guarantee
- randomized smoothing: high-probability guarantee

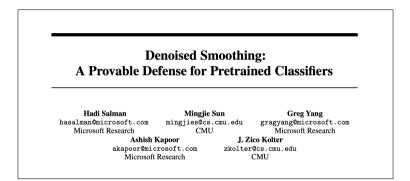
Limitation of Randomized Smoothing

• Randomized smoothing requires retraining (e.g., Gaussian data augmentation).



- Cohen et al.: Randomized smoothing with retraining
- No denoiser: Randomized smoothing without retraining
- How to avoid retraining?

Denoise Gaussian Noise



- A classifier randomized smoothing needs to be robust to Gaussian noise for better certified robustness.
- How about using denoised smoothing and then use the randomized smoothing?

Denoised Smoothing

Randomized Smoothing:

$$g(x) \coloneqq \arg\max_{c \in \mathcal{Y}} \mathbb{P}\left\{f(x+\delta) = c\right\} \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

• Applicable for any classifier f

Denoised Smoothing:

$$g(x) \coloneqq \arg \max_{c \in \mathcal{Y}} \mathbb{P}\left\{ f(\mathcal{D}(x+\delta)) = c \right\} \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

- $\mathcal{D}: \mathcal{X} \to \mathcal{X}$: a denoiser that hopefully removes δ .
- Consider a NEW classifier $f \circ D$ and then enjoy randomized smoothing.
- Retraining f is not required.

How to Train a Denoiser?

MSE objective:

$$L_{\mathsf{MSE}} \coloneqq \mathop{\mathbb{E}}_{x,y,\delta} \|\mathcal{D}(x+\delta) - x\|_2^2$$

How to Train a Denoiser?

MSE objective:

$$L_{\mathsf{MSE}} \coloneqq \mathop{\mathbb{E}}_{x,y,\delta} \|\mathcal{D}(x+\delta) - x\|_2^2$$

X Does not consider the accuracy of a classifier.

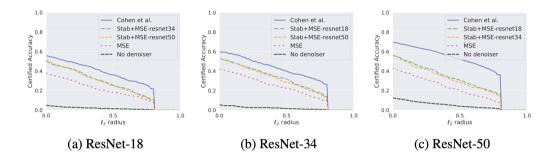
Stability objective:

$$L_{\mathsf{Stab}} \coloneqq \mathop{\mathbb{E}}_{x,y,\delta} \ell_{CE}(F(\mathcal{D}(x+\delta)), f(x)) \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

- $f: \mathcal{X} \to \mathcal{Y}$: a hard classifier
- $F: \mathcal{X} \to [0,1]^{|\mathcal{Y}|}:$ a soft classifer

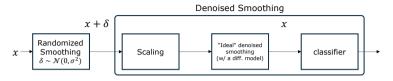
✓ Find a denoiser D that does not change predictions by the classifier f.

Results



- The denoised smoothing without retraining is quite similar to the randomized smoothing with retraining.
- But not outperform the retraining one. How can we train a better denoiser?

Diffusion Models as Denoisers



Assumptions:

• A diffusion model assumes the following noise model:

$$x_t \coloneqq \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \cdot \mathcal{N}(0, \mathbf{I}),$$

where x_0 is an initial example, t is a timestep, and α_t is any noise scheduler (monotonically decreasing in t).

• Under this noise model, an ideal denoiser finds x_0 from x_t .

Method:

• Find t^* for randomized smoothing that fits to the noise model for a diffusion model, *i.e.*,

find t subj. to $x_0 + \mathcal{N}(0, \sigma^2 \mathbf{I}) \approx \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \cdot \mathcal{N}(0, \mathbf{I})$

Conclusion

- Randomized smoothing provides a simple defense mechanism.
- Desnoised smoothing does not require to retrain a classifier (but still requires training the denoiser).
- Recently, the denoised smoothing was improved via denoising diffusion models [Carlini et al., 2023].

			Certified Accuracy at ε (%)				
Method	Off-the-shelf	Extra data	0.5	1.0	1.5	2.0	3.0
PixelDP (Lecuyer et al., 2019)	0	×	(33.0)16.0	-	-		
RS (Cohen et al., 2019)	0	×	^(67.0) 49.0	^(57.0) 37.0	(57.0)29.0	(44.0)19.0	$^{(44.0)}12.0$
SmoothAdv (Salman et al., 2019)	0	×	(65.0) 56.0	$^{(54.0)}43.0$		$^{(40.0)}27.0$	$^{(40.0)}20.0$
Consistency (Jeong & Shin, 2020)	0	×	(55.0) 50.0	^(55.0) 44.0		$^{(41.0)}24.0$	$^{(41.0)}17.0$
MACER (Zhai et al., 2020)	0	×	^(68.0) 57.0	(64.0)43.0	(64.0)31.0	(48.0)25.0	$^{(48.0)}14.0$
Boosting (Horváth et al., 2022a)	0	×	^(65.6) 57.0	^(57.0) 44.6	(57.0) 38.4	(44.6) 28.6	(38.6) 21.2
DRT (Yang et al., 2021)	0	×	(52.2)46.8	(55.2)44.4	(49.8) 39.8	(49.8) 30.4	(49.8) 23.4
SmoothMix (Jeong et al., 2021)	0	×	(55.0) 50.0	^(55.0) 43.0		$^{(40.0)}26.0$	$^{(40.0)}20.0$
ACES (Horváth et al., 2022b)	0	×	^(63.8) 54.0	^(57.2) 42.2	^(55.6) 35.6	(^{39.8)} 25.6	$^{(44.0)}$ 19.8
Denoised (Salman et al., 2020)	0	×	(60.0) 33.0	(38.0)14.0	(38.0)6.0	-	-
Lee (Lee, 2021)	•	×	41.0	24.0	11.0	-	-
Ours	•	1	$^{(82.8)}$ 71.1	^(77.1) 54.3	^(77.1) 38.1	^(60.0) 29.5	(60.0) 13.1

Cartified Accuracy at a (%)

Reference I

- N. Carlini, F. Tramer, K. D. Dvijotham, L. Rice, M. Sun, and J. Z. Kolter. (certified!!) adversarial robustness for free!, 2023.
- J. Z. Kolter and E. Wong. Provable defenses against adversarial examples via the convex outer adversarial polytope. *arXiv preprint arXiv:1711.00851*, 2017.