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Motivation

Heuristic adversarial learning often fails against powerful adversaries with the same
maximum perturbation ε.

▶ ε-FGSM training and ε-FGSM attacks: 90.9% accuracy :)
▶ ε-FGSM training and ε-PGD attacks: 0.0% accuracy :(

Can we learn a classifier robust to any small perturbations?
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Certified Adversarial Learning

Convex outer approximation [Kolter and Wong, 2017]

✓ Certified!
max

∥δ∥∞≤ε
ℓ(f, x+ δ, y) ≤ U(ε, f, x, y)

⋆ Essentially linear classification over overly approximated “convex polytope”-points

✗ Not scalable :(

Randomized smoothing: a post-hoc method

✓ (Probably) Certified!
✓ Scalable!
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A Goodness Definition: Robustness

“Hard” Robustness

∀δ s.t ∥δ∥p ≤ ε, f(x+ δ) = f(x)

f : X → Y: a hard-classifier

The constraint on the perturbation δ can be more general.

It does not matter whether f(x) is correct.
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A Certified Method: Randomized Smoothing

Smoothed Classifier

g(x) := argmax
c∈Y

P {f(x+ δ) = c} where δ ∼ N (0, σ2I)

g : X → Y: a smoothed classifier

σ is related to the maximum perturbation ε.

Easier than convex outer approximation
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Robustness Guarantee
Binary Classification

Theorem

Suppose that pA ∈ (0.5, 1] satisfies

P {f(x+ δ) = cA} = pA ≥ pA where δ ∼ N (0, σ2I).

Then, we have g(x+ δ) = cA if
∥δ∥2 < σΦ−1(pA).

cA: the most probable class when f classifies x+ ε

pA: the chance that f classifies x+ δ by cA

pA: the lower bound of pA

Φ−1: the inverse of the standard Gaussian CDF

Here, we assume that we can compute pA.

We can compute the data-dependent maximum perturbation to be robust!
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Robustness Guarantee: A Proof Sketch (1/3)
Binary Classification

Fix a perturbation δ.

From the definition of g, we have

g(x+ δ) := argmax
c
P {f(x+ ε+ δ) = c} where ε ∼ N (0, σ2I)

= argmax
c
P
{
f(x+ ε′) = c

}
where ε′ ∼ N (δ, σ2I)

?
= cA (1)

We wish to prove (1) for any classifier f under some condition. How?
▶ f can be any classifier, which is not easy to analyze.
▶ Consider a surrogate classifier that bounds the probability and is easier to analyze, e.g.,

P {f(x+ ε′) = cA} ≥ min
f ′:P{f ′(x+ε)=cA}≥pA

P {f ′(x+ ε′) = cA} >
1

2
=⇒ g(x+δ) = cA.
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Robustness Guarantee: A Proof Sketch (2/3)
Binary Classification

Interestingly, f∗ is linear (due to the Neyman-Perason lemma), where

f∗ = arg min
f ′:P{f ′(x+ε)=cA}≥pA

P
{
f ′(x+ ε′) = cA

}

▶ There could be a non-linear classifier but we can find a corresponding linear classifier with
the same mininum value.
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Robustness Guarantee: A Proof Sketch (3/3)
Binary Classification

We have a closed-form solution of f∗:

f∗(x′) :=

{
cA if δT (x′ − x) ≤ σ∥δ∥2Φ−1(pA)

cB otherwise
.

This (non-trivially) implies the following mininum value:

min
f ′:P{f ′(x+ε)=cA}≥pA

P
{
f ′(x+ ε′) = cA

}
= P

{
f∗(x+ ε′) = cA

}
= Φ

(
Φ−1(pA)−

∥δ∥2
σ

)
The above probability should be larger than 1

2 , i.e.,

Φ

(
Φ−1(pA)−

∥δ∥2
σ

)
>

1

2
=⇒ ∥δ∥2 < σΦ−1(pA).
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Robustness Guarantee
Multi-class Classification

Theorem

Suppose that pA, pB ∈ [0, 1] satisfy

P {f(x+ ε) = cA} ≥ pA ≥ pB ≥ max
c ̸=cA

P {f(x+ ε) = c} .

Then, we have g(x+ δ) = cA for all ∥δ∥2 < R, where

R :=
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
.

cA: the most probable label (with probability at least pA)

cB := argmaxc̸=cA P {f(x+ ε) = c}: the second-most probable label (with probability at
most pB)
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Robustness Guarantee: An Alternative
Multi-class Classification

Theorem

Suppose that we have class A and B that satisfy

max
k
P {fk(x+ ε)} = pA ≥ pB = max

k ̸=A
P {fk(x+ ε)} .

Then, we have g(x+ δ) = A for all ∥δ∥2 < R, where

R :=
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
.

Consider a soft classifier fk : X → [0, 1] for class k

A smoothed classifier gk(x) := argmaxkPε{fk(x+ ε)}
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Robustness Guarantee: An Alternative Proof Sketch (1/2)
Let fk : Rn → [0, 1]: a soft classifier for class k

Let f̃k : X → [0, 1]: a smoothed classifier for class k, i.e.,

f̃k(x) := (fk ∗ N (0, σI))(x) =

∫
Rn

fk(t)
exp

(
− 1

2σ2 ∥x− t∥2
)

(2πσ2)n
dt = Pε{fk(x+ ε)}

▶ The convolution of fk and N (0, σI), a.k.a. the Weierstrass transform of fk
Let pA is the most-probable class probability assigned by the smoothded classifier f̃k, i.e.,

pA = f̃A(x) where A = argmax
k

f̃k(x)

Let pB is the class probability by f̃k such that A ̸= B and less than pA, i.e.,

pB = f̃B(x) ≤ pA.

Let Φ be a CDF of a Gaussian distribution, i.e.,

Φ(a) :=
1√
2π

∫ a

−∞
exp

(
−1

2
s2
)
ds
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Robustness Guarantee: An Alternative Proof Sketch (2/2)
Then, we have the robustness guarantee due to the following reasons:

For any perturbation δ and any class k, we have∣∣∣Φ−1
(
f̃k(x)

)
− Φ−1

(
f̃k(x+ δ)

)∣∣∣ ≤ 1

σ
∥δ∥2.

▶ Φ−1 ◦ f̃ is 1
σ -Lipschitz (check out the paper)

Consider any adversarial perturbation δ̄ that changes the classification result, i.e.,

f̃A(x+ δ̄) ≤ f̃B(x+ δ̄) for some B ̸= A

For δ̄, we have

1

σ
∥δ̄∥2 ≥ Φ−1

(
f̃A(x)

)
− Φ−1

(
f̃A(x+ δ̄)

)
and

1

σ
∥δ̄∥2 ≥ Φ−1

(
f̃B(x+ δ̄)

)
− Φ−1

(
f̃B(x)

)
⇒ 2

σ
∥δ̄∥2 ≥

{
Φ−1

(
f̃A(x)

)
− Φ−1

(
f̃B(x)

)}
+
{
Φ−1

(
f̃B(x+ δ̄)

)
− Φ−1

(
f̃A(x+ δ̄)

)}
≥ Φ−1

(
f̃A(x)

)
− Φ−1

(
f̃B(x)

)
= Φ−1 (pA)− Φ−1 (pB)
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Prediction

Recall the randomized smoothing method:

g(x) := argmax
c∈Y

P {f(x+ δ) = c} where δ ∼ N (0, σ2I)

1 Draw n noisy perturbations δ1, . . . , δn.
2 Empirically compute the most probable and the second most probably labels, i.e., ĉA and ĉB .
3 If ĉA is drawn from the binomial distribution with p = 0.5, return ĉA.

Alternatively, you can use the (our-favorite) binomial tail bound.
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Certification in Evaluation

1 Compute pA via the binomial tail bound.

2 Compute the robust radius, i.e., σΦ−1(pA).

3 If (a desired radius) ≤ σΦ−1(pA), then “certified”.
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Results: ImageNet

Classifier: ResNet-50

undefended: a classifier with heuristic adversarial training (using ℓ2 adversarial attacks)

perturbation: ∥δ∥2 ≤ (radius) = (maximum perturbation size)
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Results: Comparison

(maybe) on MNIST

Baseline: deterministic robustness guarantee

randomized smoothing: high-probability guarantee
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Limitation of Randomized Smoothing

Randomized smoothing requires retraining (e.g., Gaussian data augmentation).

▶ Cohen et al.: Randomized smoothing with retraining
▶ No denoiser: Randomized smoothing without retraining

How to avoid retraining?
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Denoise Gaussian Noise

A classifier randomized smoothing needs to be robust to Gaussian noise for better
certified robustness.

How about using denoised smoothing and then use the randomized smoothing?
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Denoised Smoothing

Randomized Smoothing:

g(x) := argmax
c∈Y

P {f(x+ δ) = c} where δ ∼ N (0, σ2I)

Applicable for any classifier f

Denoised Smoothing:

g(x) := argmax
c∈Y

P {f(D(x+ δ)) = c} where δ ∼ N (0, σ2I)

D : X → X : a denoiser that hopefully removes δ.

Consider a NEW classifier f ◦ D and then enjoy randomized smoothing.

Retraining f is not required.
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How to Train a Denoiser?

MSE objective:
LMSE := E

x,y,δ
∥D(x+ δ)− x∥22

✗ Does not consider the accuracy of a classifier.

Stability objective:

LStab := E
x,y,δ

ℓCE(F (D(x+ δ)), f(x)) where δ ∼ N (0, σ2I)

f : X → Y: a hard classifier

F : X → [0, 1]|Y|: a soft classifer

✓ Find a denoiser D that does not change predictions by the classifier f .
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Results

The denoised smoothing without retraining is quite similar to the randomized smoothing
with retraining.

But not outperform the retraining one. How can we train a better denoiser?
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Diffusion Models as Denoisers

Randomized
Smoothing
𝛿 ∼ 𝒩(0, 𝜎!)

Scaling
“Ideal“ denoised

smoothing
(w/ a diff. model)

classifier𝑥

𝑥 + 𝛿 𝑥
Denoised Smoothing

Assumptions:

A diffusion model assumes the following noise model:

xt :=
√
αtx0 +

√
1− αt · N (0, I),

where x0 is an initial example, t is a timestep, and αt is any noise scheduler
(monotonically decreasing in t).

▶ Under this noise model, an ideal denoiser finds x0 from xt.

Method:

Find t∗ for randomized smoothing that fits to the noise model for a diffusion model, i.e.,

find t subj. to x0 +N (0, σ2I) ≈
√
αtx0 +

√
1− αt · N (0, I)
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Conclusion

Randomized smoothing provides a simple defense mechanism.

Desnoised smoothing does not require to retrain a classifier (but still requires training the
denoiser).

Recently, the denoised smoothing was improved via denoising diffusion models [Carlini
et al., 2023].
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adversarial polytope. arXiv preprint arXiv:1711.00851, 2017.

25 / 25


	References

