Introduction to Measure Theory

Sangdon Park

POSTECH

February 25, 2025

Motivation

- **1** σ -algebra? distribution? induced distribution? measurable space v.s. probability space?
- Are we using statistical terms correctly?
- Why is this definition valid?

Definition

A random variable X is said to have a Binomial(n, p) distribution if

$$\mathbb{P}(X=m) := \binom{n}{m} p^m (1-p)^{n-m}.$$

Rigorus proofs

Measure?

The meaning of "measure" in "measure theory" is the same as the "measure" in the following:

- How to measure the height of a boy?
- How to *measure* the legnth of the width of a table?
- How to *measure* the size of an area?
- How to *measure* the size of a discrete set?

We will learn the rigorous definition of "measure".

Algebra

Definition (Algebra)

Let Ω be a nonempty set. A set $\mathcal F$ is an **algebra** of sets on Ω if it is a nonempty collection of subsets of a set Ω that satisfies

- lacktriangledown if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (i.e., \mathcal{F} is closed under complements), and
- ② if $A_i, \ldots, A_n \in \mathcal{F}$, then $\bigcup_{i=1}^n A_i \in \mathcal{F}$ (*i.e.*, \mathcal{F} is closed under finite unions).
- Mathematicians decided to call a set of sets with two properties an algebra.

σ -algebra

Definition (σ -algebra)

Let Ω be a nonempty set. A set \mathcal{F} is a σ -algebra of sets on Ω if it is a nonempty collection of subsets of a set Ω that satisfies

- **1** if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (i.e., \mathcal{F} is closed under complements), and
- ② if $A_i \in \mathcal{F}$ is a countable sequence of sets, then $\cup_i A_i \in \mathcal{F}$ (i.e., \mathcal{F} is closed under countable unions).
- These implies that a σ -algebra is closed under countable intersections (i.e., $A_i \in \mathcal{F} \Longrightarrow \bigcap_i A_i = (\bigcup_i A_i^c)^c \in \mathcal{F}$).
- The above two properties are minimum requirements to define a "measure" (e.g., a ruler).

Measurable Space

Definition

A tuple (Ω, \mathcal{F}) is a **measurable space** if Ω is a non-empty set and \mathcal{F} is a σ -algebra.

- A measurable space is a space on which we can put a "measure".
 - A σ -algebra \mathcal{F} is a good enough set to put a "measure"
 - ▶ It is not a "measure" space a "measure" is not yet defined.

Wait! Why Do We Need These Complicated Definitions?

- A non-measurable set is a set which cannot be asigned a meaningful "volume".
- ullet There exists a non-measurable subset of $\mathbb R$ in Zermelo–Fraenkel set theory.
- ullet σ -algebra is suffficiently huge collection to define a measure.

Measure

Definition

A **measure** μ on a measureble space (Ω, \mathcal{F}) is a function $\mu : \mathcal{F} \to \mathbb{R}_{\geq 0}$ where

- $\bullet \ \mu(\emptyset) = 0 \ \mathsf{and}$
- $oldsymbol{0}$ if $A_i \in \mathcal{F}$ is a countable sequence of disjoint sets, then

$$\mu(\cup_i A_i) = \sum_i \mu(A_i).$$

- If μ is a measure on a measurable space (Ω, \mathcal{F}) , then $(\Omega, \mathcal{F}, \mu)$ is a **measure space**.
- If $\mu(\Omega) = 1$, we call μ a **probability measure**, denoted by \mathbb{P} .

Probability Space

Definition

A **probability space** is a measure space $(\Omega, \mathcal{F}, \mathbb{P})$ with a probability measure \mathbb{P} , where

- $\bullet \Omega$ is a set of "outcomes",
- \bullet \mathcal{F} is a set of "events", and
- $\mathbb{P}: \mathcal{F} \to [0,1]$ is a function that assigns probabilities to events.

Properties of A Measure

The properties of a measure is derived from the definition of the measure.

Theorem

Let $\mu: \mathcal{F} \to \mathbb{R}$ be a measure on (Ω, \mathcal{F}) .

- **1** (Monotonicity) If $A \subseteq B$, then $\mu(A) \le \mu(B)$.
- **②** (Subadditivity) If $A \subseteq \bigcup_{m=1}^{\infty} A_m$, then $\mu(A) \leq \sum_{m=1}^{\infty} \mu(A_m)$.
- **3** ...

Properties of A Measure

The properties of a measure is derived from the definition of the measure.

Theorem

Let $\mu: \mathcal{F} \to \mathbb{R}$ be a measure on (Ω, \mathcal{F}) .

- (Monotonicity) If $A \subseteq B$, then $\mu(A) \le \mu(B)$.
- **②** (Subadditivity) If $A \subseteq \bigcup_{m=1}^{\infty} A_m$, then $\mu(A) \leq \sum_{m=1}^{\infty} \mu(A_m)$.
- **3** ...

Proof (Monotonicity).

Let $B-A=B\cap A^c$ be the difference of the two sets. Using + to denote disjoint union, B=A+(B-A) so

$$\mu(B) = \mu(A) + \mu(B - A) \ge \mu(A)$$

due to the definition of a measure.

Measure On The Real Line

How to design a measure? A measure function defines a measure.

Definition

A **Stieltjes measure function** is a function $F: \mathbb{R} \to \mathbb{R}$ where

- lacktriangledown F is non-decreasing and
- \circ F is right-continuous, *i.e.*,

$$\lim_{y \downarrow x} F(y) = F(x).$$

Thomas Joannes Stieltjes (known for Riemann–Stieltjes integral)

Measure On The Real Line

Can we define a measure by using the Stieltjes measure function?

Theorem

Given a Stieltjes measure function F, there is a unique measure μ on $(\mathbb{R}, \mathcal{R})$ with

$$\mu((a,b]) = F(b) - F(a).$$

- When F(x) = x, the resulting measure is called **Lebesgue measure**.
- e.g., a length of an interval is a measure.

Random Variables

Definition (measurable map)

A function $X:\Omega\to S$ is a **measurable map** from a measurable space (Ω,\mathcal{F}) to a measurable space (S,\mathcal{S}) if

$$X^{-1}(B) \coloneqq \{\omega \in \Omega \mid X(w) \in B\} \in \mathcal{F} \text{ for all } B \in \mathcal{S}.$$

- Connect two measurable spaces don't need to define measures again.
- Help to reuse a measure defined on the measurable space (Ω, \mathcal{F}) .
 - ▶ The measure on the new space is well-defined based on the measure on the old space.
- When $(S, \mathcal{S}) = (\mathbb{R}^d, \mathcal{R}^d)$,
 - if d > 1, then X is called a **random vector** and
 - if d = 1, then X is called a **random variable**.
- If Ω is a discrete probability space, then any function $X:\Omega\to\mathbb{R}$ is a random variable.

Distribution

Definition (distribution)

An <u>induced probability measure</u> μ on $(\mathbb{R}, \mathcal{R})$ by a random variable $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{R})$ is called a **distribution**, *i.e.*, for any $B \in \mathcal{R}$

$$\mu(B) := \mathbb{P}(X^{-1}(B)).$$

- Redefine a measure over an easy space (i.e., \mathbb{R}) and call it a "distribution".
 - A distribution is a measure.
- A distribution depends on an random variable.
- Is μ a probability measure? Let's only check the second property of a measure. For any disjoint sets B_i ,

$$\mu(\cup_i B_i) = \mathbb{P}(X^{-1}(\cup_i B_i)) = \mathbb{P}(\cup_i X^{-1}(B_i)) = \sum_i \mathbb{P}(X^{-1}(B_i)) = \sum_i \mu(B_i).$$

- How to define a probability measure? One way is...
 - ▶ Define a simple "distribution function" over \mathbb{R} (e.g., the Gaussian distribution).

Distribution Functions

Definition

A (usual) distribution function of a random variable $X : \mathbb{R} \to \mathbb{R}$ is the function $F : \mathbb{R} \to \mathbb{R}$ defined by

$$F(x) := \mathbb{P}(X \le x).$$

- a.k.a. a cumulative distribution function (CDF)
- In the real line, due to the monotonicity of a measure, CDF is enough to define a measure.

Density Functions

Definition

X has a **density function** f_X if a distribution function $F(x) = \mathbb{P}(X \leq x)$ has the form

$$F(x) = \int_{-\infty}^{x} f_X(y) dy.$$

- Normal distribution: $f_X(x) := \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$
- Once a density function is defined, the probability measure is indirectly defined.
 - We don't need to define the probability measure in the original space directly (thanks to σ -algebra, measure, measurable map, ...)

More Facts on Random Variables

Theorem

If X_1, \ldots, X_n are random variables and $f: (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \ldots, X_n)$ is a random variable.

More Facts on Random Variables

Theorem

If X_1, \ldots, X_n are random variables and $f: (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \ldots, X_n)$ is a random variable.

Theorem

If X_1, \ldots, X_n are random variables, then $X_1 + \cdots + X_n$ is a random variable.

More Facts on Random Variables

Theorem

If X_1, \ldots, X_n are random variables and $f: (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \ldots, X_n)$ is a random variable.

Theorem

If X_1, \ldots, X_n are random variables, then $X_1 + \cdots + X_n$ is a random variable.

Theorem (product measure)

If $(\Omega_i, \mathcal{F}_i, \mu_i)$ for $i = 1, \dots, n$ are measure spaces and $\Omega := \Omega_1 \times \dots \Omega_n$, there is a unique measure μ on $(\prod_i \Omega_i, \prod_i \mathcal{F}_i)$ where

$$\mu(A_1 \times \dots \times A_n) = \prod_i \mu_i(A_i)$$

for any $A_i \in \mathcal{F}_i$.

Use Case: Binomial Distribution

Definition

A random variable X is said to have a Binomial (n, p) distribution if

$$\mathbb{P}(X=m) = f_X(m) := \binom{n}{m} p^m (1-p)^{n-m}.$$

- The Binomial random variable is a sum of Bernoulli random variables.
- It is usually explained via a sequence of coin flipping.
- We define a probability measure on the original space.
- How can it be redefined over \mathbb{N} ?
- Why do we have this Binomial distribution?
 - ▶ We will interpret this in a measure-theoretic perspective.

Use Case: Binomial Distribution I

Proof Sketch:

- **1** We have a probability space $(\Omega, \mathcal{F}, \mathbb{P}_0)$.
 - $\Omega := \{ \text{"S"}, \text{"F"} \}$
 - $\mathbb{P}_0(\emptyset) = 0, \ \mathbb{P}_0(\{\text{"S"}\}) = p, \ \mathbb{P}_0(\{\text{"F"}\}) = 1 p, \ \mathbb{P}_0(\{\text{"S"}, \text{"F"}\}) = 1$
- ② We have probability spaces (S_i, S_i, \mathbb{P}_i) .
 - $S_i := \{0, 1\}$
 - ▶ Consider a Bernoulli random variable where $X_i(\text{"S"}) = 1$ and $X_i(\text{"F"}) = 0$.
 - $\mathbb{P}_i(X_i = 1) = p \text{ and } \mathbb{P}_i(X_i = 0) = 1 p.$
- **3** We have a probability space $(S_{\times}, \mathcal{S}_{\times}, \mathbb{P}_{\times})$.
 - $\triangleright S_{\times} \coloneqq \prod_{i} S_{i}, S_{\times} \coloneqq \prod_{i} S_{i}, \text{ and } \mathbb{P}_{\times} \coloneqq \prod_{i} \mathbb{P}_{i}.$
- We have a probability space $(S, \mathcal{S}, \mathbb{P})$.
 - $S \coloneqq \{0, 1, \dots, n\}$
 - ▶ Consider a new random variable $X: S_1 \times \cdots \times S_n \to S$, where $X := \sum_{i=1}^n X_i$ and X_1, \ldots, X_n are independent and identically distributed.

Use Case: Binomial Distribution II

▶ $\mathbb{P}(X = m)$? Let $\mathcal{A}_m \subseteq S_1 \times \cdots \times S_n$ be a bit string with m ones.

$$\begin{split} \mathbb{P}(X = m) &= \mathbb{P}_{\times} \left(\bigcup_{A \in \mathcal{A}_m} \{A\} \right) \\ &= \sum_{A \in \mathcal{A}_m} \mathbb{P}_{\times} \left(\{A\} \right) \\ &= \sum_{A \in \mathcal{A}_m} \prod_{i=1}^n \mathbb{P}_{i} \left(\{A_i\} \right) \\ &= \sum_{A \in \mathcal{A}_m} \prod_{i=1}^n \mathbb{P}_{0} \left(\{\text{``S''}\} \text{ if } A_i = 1 \text{ else } \{\text{``F''}\} \right) \\ &= \sum_{A \in \mathcal{A}_m} p^m (1-p)^{n-m} = \binom{n}{m} p^m (1-p)^{n-m}. \end{split}$$