Trustworthy Machine Learning
Differential Privacy 2

Sangdon Park

POSTECH

1/20

Contents from

A preliminary version of this paper appears in the proceedings of the 23rd ACM Conference on Computer and Communications Security
(CCS 2016). This is a full version.

Deep Learning with Differential Privacy
October 25, 2016

Martin Abadi* Andy Chu* lan Goodfellow!
H. Brendan McMahan-* llya Mironov~ Kunal Talwar*
Li Zhang*

o (I guess) The first DP paper for deep learning

@ We have seen the algorithm of this paper multiple times!

2/20

Difference?

@ Convex loss

» Add noise on the final model

» Add noise before learning

» Strategies in convex loss treat learning process as a block box
@ Non-convex loss

» Consider learning process as a white box for the careful(?) characterization of parameter
updates.

3/20

Definition: Differential Privacy

Definition
A randomized mechanism M : D — R with domain D and range R satisfies (¢, 0)-differential
privacy if for any two “adjacent” inputs d,d’ € D and for any subset of outputs S C R it
holds that

P{M(d) € S} <e°P {M(d’) € S} + 0.

@ “adjacent” inputs: two inputs differ in a single labeled example.

4/20

A Toy Example

Alice has cancer
Tom has diabetes

, Prob(M(d’, “Bob has”) = “Cancer”)

Alice has cancer
Tom has diabetes
Bob has cancer

@ Here, the mechanism M includes training a LLM over a dataset and querying a question.
@ At least we know that d’ has Bob's information (and he likely has cancer due to the high

confidence).
5/20

Differentially Private SGD (DP-SGD)

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,zn}, loss function L£(0) =
% > £(0,z:). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6, randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € Ly, compute g¢(z:) + Vo, L(0:, zi)
Clip gradient
£(z) ¢ gi(ai)/ max (1, EGl2)
Add noise
& — 2 (X 8(z:) + N(0,0°CT))
Descent
Ory1 < 0 — 8t
Output 0r and compute the overall privacy cost (e, d)
using a privacy accounting method.

6/20

Differentially Private SGD (DP-SGD)

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,zn}, loss function L£(0) =
% > £(0,z:). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6, randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € Ly, compute g¢(z:) + Vo, L(0:, zi)
Clip gradient
£(z) ¢ gi(ai)/ max (1, EGl2)
Add noise
& — 2 (X 8(z:) + N(0,0°CT))
Descent
Ory1 < 0 — 8t
Output 0r and compute the overall privacy cost (e, d)
using a privacy accounting method.

o My(d) :=>"cr, 8i(x:i) + N(0,02C?I): the Gaussian mechanism with sampling

6/20

Differentially Private SGD (DP-SGD)

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,zn}, loss function L£(0) =
% > £(0,z:). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6, randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € Ly, compute g¢(z:) + Vo, L(0:, zi)
Clip gradient
£(z) ¢ gi(ai)/ max (1, EGl2)
Add noise
& — 2 (X 8(z:) + N(0,0°CT))
Descent
Ory1 < 0 — 8t
Output 0r and compute the overall privacy cost (e, d)
using a privacy accounting method.

o My(d) :=>"cr, 8i(x:i) + N(0,02C?I): the Gaussian mechanism with sampling

o Why clipping?

6/20

Differentially Private SGD (DP-SGD)

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,zn}, loss function L£(0) =
% > £(0,z:). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6, randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € Ly, compute g¢(z:) + Vo, L(0:, zi)
Clip gradient
£(z) ¢ gi(ai)/ max (1, EGl2)
Add noise
& — 2 (X 8(z:) + N(0,0°CT))
Descent
Ory1 < 0 — 8t
Output 0r and compute the overall privacy cost (e, d)
using a privacy accounting method.

o My(d) :=>"cr, 8i(x:i) + N(0,02C?I): the Gaussian mechanism with sampling
o Why clipping?
@ How to determine the noise level?

6/20

Differentially Private SGD (DP-SGD)

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,zn}, loss function L£(0) =
% > £(0,z:). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6, randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € Ly, compute g¢(z:) + Vo, L(0:, zi)
Clip gradient
£(z) ¢ gi(ai)/ max (1, EGl2)
Add noise
& — 2 (X 8(z:) + N(0,0°CT))
Descent
Ory1 < 0 — 8t
Output 0r and compute the overall privacy cost (e, d)
using a privacy accounting method.

o My(d) :=>"cr, 8i(x:i) + N(0,02C?I): the Gaussian mechanism with sampling
o Why clipping?
@ How to determine the noise level?

@ How to compute privacy cost?
6/20

Main Ingredient: Norm Clipping

gt(ﬂﬁi)
max (1’ Hgt(gi)llz)

gi(x;)

@ Maintain the norm of gradients to be at most C, i.e,,

g _J8 if [lg]l2 < ©
) 8 iflglz>C

7/20

Main Ingredient: Norm Clipping

gt(ifi)
- (1’ Hgt(gi)llz)

gi(x;)

@ Maintain the norm of gradients to be at most C, i.e,,

_ & [z ilglsc
ma (1,18~ e gl > €

o Limit “privacy loss” at each learning iteration for a tighter the DP guarantee

7/20

Main Ingredient: Norm Clipping

gi(wi) <
(

@ Maintain the norm of gradients to be at most C, i.e,,

_ & [z ilglsc
ma (1,18~ e gl > €

o Limit “privacy loss” at each learning iteration for a tighter the DP guarantee

> If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,

privacy leaking)

7/20

Main Ingredient: Norm Clipping

gi(wi) <
(

@ Maintain the norm of gradients to be at most C, i.e,,

_ & [z ilglsc
ma (1,18~ e gl > €

o Limit “privacy loss” at each learning iteration for a tighter the DP guarantee

> If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,
privacy leaking)
» Without clipping, we need to add noise proportional to the largest norm of gradients.

7/20

Main Ingredient: Norm Clipping

gi(wi) <
(

@ Maintain the norm of gradients to be at most C, i.e,,

_ & [z ilglsc
ma (1,18~ e gl > €

o Limit “privacy loss” at each learning iteration for a tighter the DP guarantee
> If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,

privacy leaking)
» Without clipping, we need to add noise proportional to the largest norm of gradients.
» With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.

7/20

Main Ingredient: Norm Clipping

gi(wi) <
(

@ Maintain the norm of gradients to be at most C, i.e,,

_ & [z ilglsc
ma (1,18~ e gl > €

o Limit “privacy loss” at each learning iteration for a tighter the DP guarantee

> If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,
privacy leaking)

» Without clipping, we need to add noise proportional to the largest norm of gradients.

» With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.

o Clipping before averaging

7/20

Main Ingredient: Norm Clipping

gi(wi) <
(

@ Maintain the norm of gradients to be at most C, i.e,,

_ & [z ilglsc
ma (1,18~ e gl > €

o Limit “privacy loss” at each learning iteration for a tighter the DP guarantee
> If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,
privacy leaking)
» Without clipping, we need to add noise proportional to the largest norm of gradients.
» With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.
o Clipping before averaging
» Probably provides a tighter DP guarantee.

7/20

Privacy Analysis

Finding a DP algorithm — bounding some quantity, called moments of privacy loss!
@ Bounding the quantity for each learning iteration

@ Bounding the quantity for all learning iterations

8/20

Measuring DP: Privacy Loss

P {M(aux,d) = o}

Hos M, aux,d, d') :=log pri i — o]

d,d" € D: neighboring datasets
M: a mechanism

aux: an auxiliary input, e.g., previous gradients

0 € R: an outcome

9/20

Measuring DP: Privacy Loss

P {M(aux,d) = o}

l(0; M, aux, d,d’) = log P {(M(aux, &) = o]

d,d" € D: neighboring datasets
M: a mechanism
aux: an auxiliary input, e.g., previous gradients

0 € R: an outcome

We consider o and ¢(o;-) are random variables (where 0 ~ M(aux, d)).

9/20

Measuring DP: Privacy Loss

P {M(aux,d) = o}
Sp {M(aux,d') = o}

l(0; M, aux,d,d") = lo

d,d" € D: neighboring datasets

M: a mechanism

aux: an auxiliary input, e.g., previous gradients
0 € R: an outcome

We consider o and ¢(o;-) are random variables (where 0 ~ M(aux, d)).

How to capture the properties of the privacy loss?

9/20

Measruing DP: Moments

am(\) = max an();aux,d,d) where
aux,d,d’

O‘M()‘; aux, d, d/) = log EONM(aux,d)E(O; M, aux, d, d/)

10/20

Measruing DP: Moments

am(\) = max an();aux,d,d) where
aux,d,d’

am();aux,d, d) = log Eon M(aux,a)f(0; M, aux, d, d)

e The moment-generating function (or moments) of a real-valued random variable X,
denoted by Mx (), captures the useful properties of the corresponding distribution.

Mx(\) = E{e**}

)\2X2)\3X3
:E{1+)\X+ o1 +73! +}
NE{X? NME{X3
— 1 AB{X) + 2{'} ; b

» To obtain mean, differentiating Mx (\) once with respect to A\ and setting A\ = 0.

10/20

From the Moments to the DP Guarantee

Theorem
For any € > 0, the mechanism M is (g,9)-DP for

§ = min e@MPM) e,
A

e Connect (g,0)-DP to ap(N)
e Given 4, if we know the moments ar((\), the privacy parameter ¢ is determined.

@ How to compute or bound ()7

11/20

From the Moment Bound to the DP Guarantee: A Proof Sketch

@ Recall the privacy loss ¢

P {M(aux,d) = o}
g N —

P {M(aux,d') = o}

l(0; M, aux,d,d") = lo

e Anevent B :=/{(0;:) > ¢
e For any S,
P{M(d) e S} =P {M(d) e SN B} +P{M(d) € SN B}
<P {M(d) e SNB°} +P{M(d) € SN B}
<P {M(d) € S} + P{M(d) € B}
< e P {M(d/) € S} + eomN)—Ae

@ The last inequality holds since

Eoom@{e”} _ o yoxe

]Pow,/\/[(d) {6(0) Z E} = IPowM(d) {eAé(o) 2 6)\6} S 6)“5 S €

where the first inequality holds due to the Markov's inequality.

12/20

Mechanism

One-step Mechanism

My(d) =" gilw:) + N (0,02C2I)

i€ Ly

@ This is (almost) the Gaussian mechanism.
@ We know it is DP.

Multi-step Mechanism

T
) o Z =) My (d

t=1
@ This is the composition of the Gaussian mechanisms.

e Is it DP?

13/20

Composibility Theorem

Theorem

Suppose that a mechanism M consists of a sequence of adaptive mechanisms,
ie, M= (My,...,Mr), where My : Rq X -+ X Ri—1 X D — Ry. Then, for any A > 0

am) < 3 an, (V)

@ “Adaptive” mechanism: a mechanism that depends on all previous mechanisms

auxy = M;j(auxy,d)
auxs = My (auxy, d)

MQ(Ml (auxl, d), d)

o M: e.g., T-step gradient aggregation
@ My: e.g., one-step gradient aggregation

14/20

Composibility Theorem: A Proof Sketch 1/2
o Ml:t = (M].) oo aMt)
@ 014 :=(01,...,0¢)
@ For any neighboring datasets d,d’ € D and outputs 0.7, we have
P {Mi.r(0o1.7-1,d) = o1.7}
l(o1.7; My.r,01.7-1,d,d') = lo d
(o1 1:T5 01:7—1) gIP{MlT(OlT 1,d’):01;T}
H]P{Mt Olt 1,

=0t | M1—1(01:4—2,d) = 01.4-1}

P {M(01:t—1,d) = o1 | Mi:4—1

I
Mq

log

) = 01:t—1}

01:4—2,d) = 01:4—1}

d)

L PAM(01:-1,d') = 0r | M1 (01:0-2,
d)
d’)

(
113{/Vlt(Olzt 1, —0t|M1t 1(01t 25

t=1

I
WE

E(Ot; Mtu O1:t—1, d) d/)

~
I

1

) - Ol:t—l}

15/20

Composibility Theorem: A Proof Sketch (2/2)

e Bound apr(A) = ap,.. () as follows

log E {eAf(Oll;T%/V[l:Tyd,d/)} = log E {e’\ T, f(OQ;Mt,OM_l,d,d')}

Oll:TNMI:T(') Oll:TNMliT(')

T
= log E {H eM(oé;Mz,OLH,d,d')}
1)

t=1

{e/\ﬁ(off;Mt,Olzt—hd»d/) }

T
e log H eaMt ()‘;Ol:t—lyd7d/)
t=1

T
= Z M, ()‘7 01:t—1, d? dl)
t=1

16 /20

Main Theorem
Theorem

There exist constants ¢; and cy so that given the sampling probability ¢ = L/N and the
number of steps T, for any € < c2q*T, Algorithm 1 is (e, 0)-differentially private for any § > 0

if we choose
qg/Tlogl/§

&

O’ZCQ

@ Provide intuition on tuning nobs.
@ ¢ o< T privacy-accuracy trade-off

@ With the standard composition, we need

3

. (WT 1og<1/6>log<T/5>>

» Clipping makes the difference?

17/20

Practical Summary

@ The moments bound: ’
am(N) <D ar (V)
i=1

@ For the Gaussian mechanism with random sampling

) o(2) : pz) *
a;(A) = logmax <EZN“° ((1 —q)po(z) + QM1(2)> B <M0(Z)>) ’

where pig = N(0,02%), 1 == N(1,0%), and p(2) = (1 = q)po(2) + qpa(2).
e From the “Moment-DP" theorem, M is (g,6)-DP if

min e®MMN A < i eXimioamN)=xe — 5
A A

» eg., if T, q,0, and § are given, we can compute ¢.
> greedy search over A < 32
18/20

(Proposed) Moments Accountant v.s. (Standard) Strong Composition

25

strong com'posmon —43—
moments accountant —@—

20

15

epsilon

10

50 100 150 200 250 300 350 400
epoch

Figure 2: The ¢ value as a function of epoch E for

¢=0.01,0 =4, § = 107°, using the strong composition
theorem and the moments accountant respectively.

19/20

(Proposed) Moments Accountant v.s. (Standard) Strong Composition

25

strong composition —f3—
moments accountant —@—

epsilon

50 100 150 200 250 300 350 400
epoch

Figure 2: The ¢ value as a function of epoch E for

¢=0.01,0 =4, § = 107°, using the strong composition
theorem and the moments accountant respectively.

@ How about the comparison of model accuracy? Clipping may hurt accuracy.

19/20

Conclusion

@ The proposed “Moments Accountant” has a stronger DP guarantee.
» Why? practical treatments on clipping

@ Nice connection between a moments bound and the DP guarantee.

20/20

