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Why Privacy Guarantees in Learning?

@ Not anonymized dataset for learning — privacy leak

3/25



Why Privacy Guarantees in Learning?

@ Not anonymized dataset for learning — privacy leak

@ Anonymized dataset for learning — looks okay but possible to leak private information

3/25



Why Privacy Guarantees in Learning?

Anonymized Dataset

Name Age Gender Zip Code  Smoker Diagnosis

* 60-70 Male 191** B § Heart disease

i 60-70 Female 191** N Arthritis

s 60-70  Male 191** Y Lung cancer

» 60-70 Female 191** N Crohn’s disease

> 60-70 Male 191** Y Lung cancer

i 50-60  Female 191** N HIV

o 50-60  Male 191** 4 Lyme disease

i 50-60  Male 191 Y Seasonal allergies
i 50-60  Female 191** N Ulcerative colitis

Figure: An example from Kearns & Roth, The Ethical Algorithm

@ anonymized dataset — looks okay but still privacy leak

> If we know Rebecca is 55 years old and in this database, then we know she has 1 of 2

diseases.
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Why Not Use Cryptosystems?

@ Just encrypt the entire data.
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Why Not Use Cryptosystems?

Just encrypt the entire data.

Entities in encryption: Sender, Receiver, and Adversary
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> e.g., a learning algorithm (=curator) releases a model for some “benefits”
» But, the model should not reveal private information.

Note that homomorphic encryption could be alternatives but slow (yet)
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Goal for Privacy In Learning

Goal

Learning nothing about an individual while learning useful information about a population.

@ Here, an algorithm can transform a dataset into another dataset
@ Sender: an algorithm that releases a model

@ Reciever: A model user
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Goal for Privacy In Learning

Goal

Learning nothing about an individual while learning useful information about a population.

Here, an algorithm can transform a dataset into another dataset
Sender: an algorithm that releases a model

o
o
@ Reciever: A model user
o

How to achieve this goal? Add noise!
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Randomized Response
An Example

@ Goal of a survey: estimate a statistic on illegal behaviors of participants

» Curator: a participant
> Analyst: a researcher
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Randomized Response
An Example

@ Goal of a survey: estimate a statistic on illegal behaviors of participants

» Curator: a participant
> Analyst: a researcher

@ Each participant follows the following survey process:
© Flip a coin
@ If “tails”, then respond truthfully.
© If “heads”, then flip a second coin and respond “Yes" if “heads” and “No" if “tails”.
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Randomized Response

General Description

+7

_ {Xi with probability
l -7

1 —X; with probability

NI DI

X; € {0,1}: the truthful response
Y; € {0,1}: a randomized response
v = 0: a uniformly random strategy

v/ private
X not informative
@ 7 =1/2: an honest strategy
X no privacy
v/ informative

~ = 1/4: the previous example.
v/ private — no learning on an individual response
v/ informative — learning on a population statistic
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Randomized Response

How Informative?

X; with probability

Yi
{1 — X; with probability 5 — ~,

D= D=

@ How to estimate p = E{X;}?
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Randomized Response
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Randomized Response

How Informative?

i

D= D=

X; with probability
1 —X; with probability

@ How to estimate p = E{X;}?
@ Observe that

1 1 1 1 1
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Randomized Response

How Informative?

i

N[ N[
_l.
2

X; with probability
1 —X; with probability

@ How to estimate p = E{X;}?
@ Observe that

1 1 1 1 1
E{Y;;}:Xi(§+7>+(1in)(5*’Y):2’}/Xi+§*7 —— XZZE{?(K,*i*F’Y)}

@ Consider the following estimator:

@ We have
Bt =13 (2 (B0 -3+7)) =130 (£ ((2m0xd + 5 -0) -5 +9)) = Bixan

i=1
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Randomized Response

How Informative?
X; with probability
1 —X; with probability

+

N[ N[

How to estimate p = E{X;}7?
Observe that

1 1 1 1 1
E{Y:} = Xi (§+7>+(1*Xi) (5*’7) :2’YX2'+§*7 = Xi:IE{Q—(KfiJr’y)}

@ Consider the following estimator:

@ We have
I/ 1 1 I/ 1 1 1
E{p} = — — E{Y:} — = == — [ | 27E{X; = — - = = E{X;}.
=33 (5 (B -5 +1)) =3 2 (5 ((2mixd + 5 -7) - 5 +9)) =Ex)
@ The randomized response looks “working”! How to rigorously measure whether this method does not leak

privacy? o/25



Differential Privacy

Definition

A randomized algorithm M is (g, §)-differentially private if for any S € Range(M) and for any
two “neighboring” datasets D; and D,

P{M(Dy) € S} < exp(e)P {M(D2) € S} + 9,
where the probability is taken over the randomness of M.

o If M behaves nearly identically for D; and D5, an attacker cannot tell whether Dy or Do
was used (so cannot learn an individual information)

10/25



Randomized Response is DP

Theorem
The randomized response is (1n 3, 0)-differentially private.
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Randomized Response is DP

Theorem

The randomized response is (1n 3, 0)-differentially private.

Proof sketch.
@ M: a randomized response
» M(Xy,...,X,) =(Y1,...,Y,)
o Let v = %
e Consider any realization S € {0,1}" of (Y1,...,Y,).
@ Consider X and X’ which differ only in coordinate j.
@ Then, we have

PIM(X) =a} _ I PIM(Xi) = ai} _ PAIM(X;) =a;} _ P{Y;=a;} _1/24+7 _ 1ns
P{M(X") = a} i PIM(X)) = @i} PAM(X}) =a;}  P{Y] =a;} ~ 1/2—~ '

» The inequality holds when X; = a; and X} # a;.
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Laplace Mechanism

Definition

Given any function f : NI*l — R, the Laplace mechanism is defined as:

My (z, f,e) = f(x)+ (Y1,...,Y%),

where Y] are i.i.d. random variables drawn from Lap <f(l‘)Z|A€ )

o Lap(a|t) = Lap(b) = % exp (~13))

o The ¢;-sensitivity of a function f : NI¥l — R¥ is

Af = max 1 (@) = f)l-

2 yeNI¥ |z —yll1=1

@ e.g., x is a dataset and f is a post-processor.
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Laplace Mechanism is DP

Theorem
The Laplace mechanism preserves (e, 0)-differential privacy.
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Laplace Mechanism is DP
Proof Sketch
o Let z € NI*l and y € NI*l be such that |lz — y|; <1
@ p,: the PDF of My(x, f, &)
e py: the PDF of My(y, f,¢)
@ Forany z € R”, we have
k

ey = L (e (5055 fee (2105) )

- e (1f ()i — 2] = |f (@)i — =)
_Hexp( = >

<ﬁm%W@QMM)

<exp(e).

Px(2)
° y (2

> exp (—¢) follows by symmetry.

~—

]

14/25



Gaussian Mechanism is DP

Definition

Let f : NI*I — R? be an arbitrary d-dimensional function, and define its /5 sensitivity to be
As f = maXadjacentz,y || f(x) — f(y)|l2. The Gaussian Mechanism with parameter o adds noise
scaled to N(0,0?) to each of the d components of the output.

Theorem
Let e € (0,1) be arbitrary. For ¢ > 21n (122), the Gaussan Mechanism with parameter
o> % is (e, 0)-differentially private.
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How Can It be Connected to Learning?

Journal of Machine Learning Research 12 (2011) 1069-1109 Submitted 6/10; Revised 2/11; Published 3/11
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Empirical Risk Minimization (ERM)

Setup

@ X: an example space
» Assume that [|z||s < 1forz e X

@ V: a label space

o D= {(zj,y:)}I"y & X x V: a training set
o f: X — Y. a predictor

@ /:Y xY — R: aloss function

@ Regularized empirical risk minimization:

—_

J(f,D) = — > 0(f () m) + AN(f),
where N(f) is a regularizer.
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Assumptions

Definition
A function H(f) over f € R% is said to be strictly convex if for all o € (0,1), f, and g(# f),
H(af+(1-a)g)) <aH(f)+(1—-a)H(g).

It is said to be A-strongly convex if for all a € (0,1), f, and g(# f),
H(af + (1~ a)g) < aH(f) + (1 - )H(g) ~ sha(l ~ )] — gl

@ A strictly convex function has a unique minimum.
@ (strongly convex) = (strictly convex)

@ The regularizer N(-) and loss ¢(-,-) are differentiable.

» No ¢1-norm regularizer
» No hinge loss

18/25



Privacy Model

Goal: Produce a classifier which preserves the privacy of individual entities of the training set
D.

Definition (e-differential privacy)

An algorithm A provides e-differential privacy if for any two data sets D and D’ that differ in a
single entry and for any S
P{A(D') € S}

e A(D): a randomized algorithm that produces a classifier from a training set D.

@ D’ and D have n — 1 samples (z;,y;) in common,; the differing sample contains private
values.
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Is ERM differentially private?

@ Given D and D/, let
fp = axgmin J(£.D) and f = argumin J(f. D)
o Letting S = {f5}

P{fpeS}=1+P{ff €S} =0
@ Not differentially private!
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Algorithm 1: Output Perturbation

output perturbation
Jiprivi—1aLs m}n J(f,D)+Db
@ b is random noise with density
v(b) x e PIPl

with 8 = 2<.
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Algorithm 2: Objective Perturbation

output perturbation
1
Faity = 278 m}n J(f, D)+ ﬁbe
@ b is random noise with density
v(b) x e PIPl

2
sflog(lJrs—/c\Jr—ngAQ )

with g = 5 (assuming ¢ is chosen to be 5 > 0).
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Privacy Guarantee

Theorem

If N(-) is differentiable and 1-strongly convex, and { is convex and differentiable with
|¢/(z)| <1 for all z, then Algorithm 1 provides e-differential privacy.

Theorem

If N(-) is doubly differentiable and 1-strongly convex, and ¢ is convex and doubly differentiable
with |[0'(z)| <1 and |("(z)| < ¢ for all z, then Algorithm 2 provides e-differential privacy.

@ Algorithm 2 requires stronger assumptions.
@ What's the benefit of Algorithm 27
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Correctness Guarantee
Lemma

Suppose N (-) is doubly differentiable with |V N (f)|l2 < n for all f, ¢ is differentiable and has continuous
c-Lipschitz derivatives. Then, letting fori, be the output of Algorithm 1, we have

N 2d? (% + n) log? %
Py, {J(fp,,-v, D) < J(f*,D) + e >1-4.
Lemma
Suppose N (-) is 1-strongly convex and globally differentiable, and ¢ is convex and differentiable with |¢'(z)| < 1
for all z. Then, letting fpriy be the output of Algorithm 2, we have

. 4d?log® ¢
Py {J(fp,,-v, D)< J(f"\ D)+ — 5zt g 210

e If £ +n > 2, Algorithm 2 is better.
@ why not use Algorithm 1 in Certified Removal?
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Conclusion

o Differential privacy in learning

» Hide “local” information — satisfying the privacy guarantee
» Learn “global” information — satisfying the correctness guarantee

e Two goals are conflicting each other.
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