# Trustworthy Machine Learning Unlearning 2

Sangdon Park

POSTECH

#### **Motivation**

- Certified removal [Guo et al., 2020] assumes strongly convex loss
- Zhang et al. [2024] provides a direct extention of certified removal [Guo et al., 2020]

# **Definition: Certified Unlearning**

#### Definition ( $(\varepsilon, \delta)$ -Certified Unlearning)

Let

- $\bullet \ \mathcal{D}$  be a training set,
- $\mathcal{D}_u \subset \mathcal{D}$  be an unlearning set,
- $\mathcal{D}_r\coloneqq \mathcal{D}\setminus \mathcal{D}_u$  be a retain set,
- $\bullet \ \mathcal{H}$  be a hypothesis space,
- $\mathcal{A}$  be a learning algorithm.

Then,  $\mathcal{U}$  is an  $\varepsilon$ - $\delta$  certified unlearning algorithm if and only if for all  $\mathcal{T} \subseteq \mathcal{H}$ , we have

$$\begin{split} \mathbb{P}\{\mathcal{U}(\mathcal{D},\mathcal{D}_u,\mathcal{A}(\mathcal{D}))\in\mathcal{T}\} &\leq e^{\varepsilon}\mathbb{P}\{\mathcal{A}(\mathcal{D}_r)\in\mathcal{T}\} + \delta \\ \mathbb{P}\{\mathcal{A}(\mathcal{D}_r)\in\mathcal{T}\} &\leq e^{\varepsilon}\mathbb{P}\{\mathcal{U}(\mathcal{D},\mathcal{D}_u,\mathcal{A}(\mathcal{D}))\in\mathcal{T}\} + \delta \end{split}$$

### Key Theorem for Certified Unlearning



• The key next step is bounding  $\Delta$ .

- $\blacktriangleright$  With convex models, boudning  $\Delta$  seems feasible.
- How about non-convex models?

## Algorithm

#### Certified Unlearning without Convexity

Algorithm: A Single-Step Newton Update

$$\tilde{w}^* \approx \tilde{w} = w^* - H_{w^*}^{-1} \nabla \mathcal{L}(w^*, \mathcal{D}_r)$$

- $\bullet \ \mathcal{H}:$  a set of models
- $\bullet~\mathcal{D}:$  an original training set
- $\mathcal{D}_u \subset \mathcal{D}$ : an unlearned set
- $\mathcal{D}_r\coloneqq \mathcal{D}\setminus \mathcal{D}_u$ : a retained set
- $w^* \coloneqq \arg\min_{w \in \mathcal{H}} \mathcal{L}(w, \mathcal{D})$ : an optimal trained model could be a local optimum
- $\tilde{w}^* \coloneqq \arg\min_{w \in \mathcal{H}} \mathcal{L}(w, \mathcal{D}_r)$ : an optimal unlearned model could be a local optimum
- $\tilde{w}$ : an estimated unlearned model why? due to the Taylor expansion of  $\nabla \mathcal{L}$  at  $w^*$ , *i.e.*,

$$\nabla \mathcal{L}(\tilde{w}^*, \mathcal{D}_r) \approx \nabla \mathcal{L}(w^*, \mathcal{D}_r) + H_{w^*}(\tilde{w}^* - w^*)$$

Thus,  $0 = \nabla \mathcal{L}(\tilde{w}^*, \mathcal{D}_r) \approx \nabla \mathcal{L}(w^*, \mathcal{D}_r) + H_{w^*}(\tilde{w}^* - w^*)$  implies the update rule.

### **Main Direction**

#### Certified Unlearning without Convexity

Bounding the approximation error  $\|\tilde{w} - \tilde{w}^*\|_2$ . To this end, we need following assumptions.

#### Assumption 1

A loss function  $\ell(w, x, y)$  has an L-Lipschitz gradient in w, *i.e.*,

 $\|\nabla \mathcal{L}(w, \mathcal{D})\|_2 \le L.$ 

#### Assumption 2

A loss function  $\ell(w, x, y)$  has an M-Lipschitz Hessian in w, *i.e.*,

 $||H_w - H_{w'}||_2 \le M ||w - w'||_2.$ 

### **Approximation Error**

**Certified Unlearning without Convexity** 

#### Lemma

We have the following approximation error (given previously defined notations):

$$\|\tilde{w} - \tilde{w}^*\|_2 \le \frac{M}{2} \|H_{w^*}^{-1}\|_2 \cdot \|w^* - \tilde{w}^*\|_2^2.$$

• Note that the proof of this lemma does not need global optimality.

#### Bounding the Norm of the Inverse Hessian

**Certified Unlearning without Convexity** 

Update after Local Convex Approximation

 $\tilde{w} = w^* - (H_{w^*} + \lambda I)^{-1} \nabla \mathcal{L}(w^*, \mathcal{D}_r)$ 

- Intuitively, we approximatly convert the non-convex objective to the strongly convex one.
  - In general,  $||H_{w^*}^{-1}||_2$  is arbitrarly large.
  - Add a small diagonal, *i.e.*,  $\|(H_{w^*} + \lambda I)^{-1}\|_2$ , equivalent to the Hessian of the regularized objective, *i.e.*,  $\mathcal{L}(w, \mathcal{D}_r) + \frac{\lambda}{2} \|w\|_2^2$
  - At  $w^*$ , the regularized objective can be strongly convex for some  $\lambda$ .

#### Bounding the Norm of $w^* - \tilde{w}^*$

Certified Unlearning without Convexity

Constrained Learning

$$w^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D}) \quad \text{and} \quad \tilde{w}^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D}_r)$$

• Due to the constraint, we have

$$||w^* - \tilde{w}^*||_2 \le ||w^*||_2 + || - \tilde{w}^*||_2 \le 2C$$

- If  $|\mathcal{D}_u|$  is quite small, this makes sense, *i.e.*,  $\mathcal{D} \approx \mathcal{D}_r \Rightarrow w^* \approx \tilde{w}^*$ .
- C also encodes the distance between  $\mathcal{D}$  and  $\mathcal{D}_r$ .

### Bounding the Norm of $w^* - \tilde{w}^*$

Certified Unlearning without Convexity

Constrained Learning

$$w^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D}) \quad \text{and} \quad \tilde{w}^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D}_r)$$

• Due to the constraint, we have

$$||w^* - \tilde{w}^*||_2 \le ||w^*||_2 + || - \tilde{w}^*||_2 \le 2C$$

- If  $|\mathcal{D}_u|$  is quite small, this makes sense, *i.e.*,  $\mathcal{D} \approx \mathcal{D}_r \Rightarrow w^* \approx \tilde{w}^*$ .
- C also encodes the distance between  $\mathcal{D}$  and  $\mathcal{D}_r$ .
- Can you criticize?
  - Can we actually have small C for neural networks (as  $||x||_2$  is proportional to the dimension of x)?

## **Approximation Error Bound**

Main Theorem of This Paper

#### Theorem

We have

$$\|\tilde{w} - \tilde{w}^*\|_2 \le \frac{2C(MC + \lambda)}{\lambda + \lambda_{\min}}.$$

- Recall that
  - $\bullet \ w^* = \arg\min_{\|w\|_2 \le C}$
  - $\tilde{w} = w^* (H_{w^*} + \lambda I)^{-1} \nabla \mathcal{L}(w^*, \mathcal{D}_r)$  with  $\lambda > \|H_{w^*}\|_2$
  - $\tilde{w}^* = \arg \min_{\|w\|_2 \le C} \mathcal{L}(w^*, \mathcal{D}_r)$
  - $\lambda_{\min}$ : the smallest eigenvalue of  $H_{w^*}$
- A few notes:
  - Can we unlearn with certification from any original model?
  - Is this data-dependent bound?

#### **Efficient Hessian Computation**

#### Proposition

Given x i.i.d. tained samples  $\{X_1, \ldots, X_s\}$ , we have  $\{H_{1,\lambda}, \ldots, H_{s,\lambda}\}$  of the Hessian  $H_{w^*} + \lambda I$ , where  $H_{i,\lambda} \coloneqq \nabla^2 \mathcal{L}(w^*, X_i) + \lambda I$ , let

$$\tilde{H}_{i,\lambda}^{-1} = I + \left(I - \frac{H_{i,\lambda}}{H}\right) \tilde{H}_{i-1,\lambda}^{-1},$$

where  $\tilde{H}_{0,\lambda}^{-1} = I$  and  $\|\nabla^2 \ell(w^*, x)\| \le H$  for all  $x \in \mathcal{D}_r$ . Then,  $\frac{\tilde{H}_{s,\lambda}^{-1}}{H}$  is an asymptotic unbiased estimator of the inverse Hessian  $(H_{w^*} + \lambda I)^{-1}$ .

- Reduces sample complexity, *i.e.*, we need only s samples instead of n samples.
- Is this effective with "data parallelization"?

# **Membership Inference Attack**

Experiment

| Method    | MLP & MNIST |                  |                  | AllCNN & CIFAR-10 |                                    |                  | ResNet18 & SVHN |                  |                  |
|-----------|-------------|------------------|------------------|-------------------|------------------------------------|------------------|-----------------|------------------|------------------|
|           | Relearn T   | Attack Acc       | Attack AUC       | Relearn T         | Attack Acc                         | Attack AUC       | Relearn T       | Attack Acc       | Attack AUC       |
| Retrain   | 25          | $93.10 \pm 0.33$ | $95.16 \pm 0.47$ | 17                | $79.82 \pm 0.35$                   | $88.71 \pm 0.43$ | 7               | $90.47 \pm 0.14$ | $93.07 \pm 0.27$ |
| Fine Tune | 17          | $93.65 \pm 0.23$ | $95.37 \pm 0.46$ | 14                | $79.42 \pm 1.05$                   | $88.13 \pm 0.66$ | 7               | $90.63 \pm 0.32$ | $92.96 \pm 0.31$ |
| Neg Grad  | 21          | $93.73 \pm 0.45$ | $95.42 \pm 0.43$ | 17                | $78.63 \pm 1.23$                   | $87.58 \pm 0.96$ | 9               | $90.02\pm0.13$   | $92.89 \pm 0.22$ |
| Fisher    | 21          | $93.85 \pm 0.22$ | $95.37 \pm 0.51$ | 14                | $79.70 \pm 1.03$                   | $88.58 \pm 0.76$ | 9               | $90.47 \pm 0.84$ | $93.13 \pm 0.19$ |
| L-CODEC   | 20          | $95.05 \pm 0.05$ | $95.31 \pm 0.21$ | 14                | $83.60\pm0.62$                     | $92.18 \pm 0.17$ | 7               | $93.22 \pm 0.35$ | $93.75 \pm 0.54$ |
| Certified | 24          | $93.22\pm0.46$   | $95.28 \pm 0.50$ | 25                | $\textbf{78.00} \pm \textbf{1.18}$ | $87.22 \pm 1.13$ | 9               | $88.63 \pm 1.58$ | $92.18 \pm 1.16$ |

- Attack Acc (= Attack F1 score) is as good as retraining.
- Here, Attack means membership inference attacks, e.g.,
  - ▶ For  $\{(z_i, b_i)\}$  where  $z_i := (x_i, y_i)$  and  $b_i \in \{ "z_i \notin \mathcal{D}_{train} ", "z_i \in \mathcal{D}_{unlearn} " \}$ , an attacker h wins if  $h(z_i)$  correctly predicts  $b_i$

## **Unlearning Time**

Experiment



• Efficient – note that the y-axis is log-scale.

#### Conclusion

• Proposes a certified unlearning method for deep models.

• (I guess) Mainly thanks to the bounded optimal solutions, *i.e.*,

$$w^* = \arg\min_{\|w\|_2 \leq C} \mathcal{L}(w, \mathcal{D}) \quad \text{and} \quad \tilde{w}^* = \arg\min_{\|w\|_2 \leq C} \mathcal{L}(w, \mathcal{D}_r).$$

The above implies

$$||w^* - \tilde{w}^*||_2 \le 2C.$$

• How can we minimize C?

• Recall that 
$$\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D})$$
  
• Recall that  $\sigma \ge \frac{2C(MC+\lambda)}{\varepsilon(\lambda+\lambda_{\min})} \sqrt{2 \ln \frac{1.25}{\delta}}$ 

 $\blacktriangleright$  Larger  $C \rightarrow$  larger noise  $\sigma \rightarrow$  accruacy drop

#### **Reference** I

- C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten. Certified data removal from machine learning models. In *International Conference on Machine Learning*, pages 3832–3842. PMLR, 2020.
- B. Zhang, Y. Dong, T. Wang, and J. Li. Towards certified unlearning for deep neural networks. *arXiv preprint arXiv:2408.00920*, 2024.