Trustworthy Machine Learning Unlearning 2

Sangdon Park

POSTECH

Motivation

- Certified removal [\[Guo et al., 2020\]](#page-15-0) assumes strongly convex loss
- [Zhang et al. \[2024\]](#page-15-1) provides a direct extention of certified removal [\[Guo et al., 2020\]](#page-15-0)

Definition: Certified Unlearning

Definition $((\varepsilon, \delta)$ -Certified Unlearning)

Let

- \bullet D be a training set,
- \bullet $\mathcal{D}_u \subset \mathcal{D}$ be an unlearning set,
- $\mathcal{D}_r\coloneqq\mathcal{D}\setminus\mathcal{D}_u$ be a retain set,
- \bullet H be a hypothesis space,
- \bullet A be a learning algorithm.

Then, U is an $\varepsilon-\delta$ certified unlearning algorithm if and only if for all $\mathcal{T} \subseteq \mathcal{H}$, we have

$$
\mathbb{P}\{\mathcal{U}(\mathcal{D}, \mathcal{D}_u, \mathcal{A}(\mathcal{D})) \in \mathcal{T}\} \le e^{\varepsilon} \mathbb{P}\{\mathcal{A}(\mathcal{D}_r) \in \mathcal{T}\} + \delta
$$

$$
\mathbb{P}\{\mathcal{A}(\mathcal{D}_r) \in \mathcal{T}\} \le e^{\varepsilon} \mathbb{P}\{\mathcal{U}(\mathcal{D}, \mathcal{D}_u, \mathcal{A}(\mathcal{D})) \in \mathcal{T}\} + \delta.
$$

Key Theorem for Certified Unlearning

Theorem Let $\tilde{w}^* \coloneqq \arg\min_{w \in \mathcal{H}} \mathcal{L}(w, \mathcal{D}_r),$ $\tilde{w} \coloneqq \mathcal{U}_{\text{remove}}(w^*, \mathcal{D}_u, \mathcal{D})$, and $\|\tilde{w} - \tilde{w}^*\|_2 \leq \Delta.$ Then, $\mathcal{U}_{\text{hide}}(w^*, \mathcal{D}_u, \mathcal{D}) \coloneqq \tilde{w} + Y$ is an ε- δ certified unlearning if $Y \sim \mathcal{N}(0, \sigma^2\mathbf{I})$ and $\sigma \geq \frac{\Delta}{\varepsilon}$ $\frac{\Delta}{\varepsilon}\sqrt{2\ln\frac{1.25}{\delta}}.$

• The key next step is bounding Δ .

- ▶ With convex models, boudning Δ seems feasible.
- ▶ How about non-convex models?

Algorithm

Certified Unlearning without Convexity

Algorithm: A Single-Step Newton Update

$$
\tilde{w}^* \approx \tilde{w} = w^* - H_{w^*}^{-1} \nabla \mathcal{L}(w^*, \mathcal{D}_r)
$$

- \bullet H: a set of models
- \bullet \mathcal{D} : an original training set
- \bullet $\mathcal{D}_u \subset \mathcal{D}$: an unlearned set
- $\mathcal{D}_r\coloneqq\mathcal{D}\setminus\mathcal{D}_u$: a retained set
- $w^* \coloneqq \arg\min_{w \in \mathcal{H}} \mathcal{L}(w, \mathcal{D})$: an optimal trained model could be a local optimum
- $\tilde{w}^* \coloneqq \arg\min_{w \in \mathcal{H}} \mathcal{L}(w, \mathcal{D}_r)$: an optimal unlearned model could be a local optimum
- \tilde{w} : an estimated unlearned model why? due to the Taylor expansion of $\nabla\mathcal{L}$ at w^* , *i.e.,*

$$
\nabla \mathcal{L}(\tilde{w}^*, \mathcal{D}_r) \approx \nabla \mathcal{L}(w^*, \mathcal{D}_r) + H_{w^*}(\tilde{w}^* - w^*)
$$

Thus, $0 = \nabla \mathcal{L}(\tilde{w}^*, \mathcal{D}_r) \approx \nabla \mathcal{L}(w^*, \mathcal{D}_r) + H_{w^*}(\tilde{w}^* - w^*)$ implies the update rule.

Main Direction

Certified Unlearning without Convexity

Bounding the approximation error $\| \tilde w - \tilde w^*\|_2.$ To this end, we need following assumptions.

Assumption 1

A loss function $\ell(w, x, y)$ has an L-Lipschitz gradient in w, i.e.,

 $\|\nabla \mathcal{L}(w, \mathcal{D})\|_2 \leq L.$

Assumption 2

A loss function $\ell(w, x, y)$ has an M-Lipschitz Hessian in w, i.e.,

 $||H_w - H_{w'}||_2 \leq M ||w - w'||_2.$

Approximation Error

Certified Unlearning without Convexity

Lemma

We have the following approximation error (given previously defined notations):

$$
\|\tilde{w}-\tilde{w}^*\|_2 \leq \frac{M}{2}\|H_{w^*}^{-1}\|_2 \cdot \|w^*-\tilde{w}^*\|_2^2.
$$

• Note that the proof of this lemma does not need global optimality.

Bounding the Norm of the Inverse Hessian

Certified Unlearning without Convexity

Update after Local Convex Approximation

 $\tilde{w} = w^* - (H_{w^*} + \lambda I)^{-1} \nabla \mathcal{L}(w^*, \mathcal{D}_r)$

Intuitively, we approximatly convert the non-convex objective to the strongly convex one.

- ▶ In general, $\|H_{w^*}^{-1}\|_2$ is arbitrarly large.
- ▶ Add a small diagonal, $i.e.,$ $\|(H_{w^*} + \lambda I)^{-1}\|_2$, equivalent to the Hessian of the regularized objective, *i.e.,* $\mathcal{L}(w, \mathcal{D}_r) + \frac{\lambda}{2} ||w||_2^2$
- ► At w^* , the regularized objective can be strongly convex for some λ .

Bounding the Norm of $w^* - \tilde{w}^*$

Certified Unlearning without Convexity

Constrained Learning

$$
w^*=\arg\min_{\|w\|_2\leq C}\mathcal{L}(w,\mathcal{D})\quad\text{and}\quad \tilde{w}^*=\arg\min_{\|w\|_2\leq C}\mathcal{L}(w,\mathcal{D}_r)
$$

• Due to the constraint, we have

$$
||w^* - \tilde{w}^*||_2 \le ||w^*||_2 + || - \tilde{w}^*||_2 \le 2C
$$

- If $|\mathcal{D}_u|$ is quite small, this makes sense, *i.e.,* $\mathcal{D} \approx \mathcal{D}_r \Rightarrow w^* \approx \tilde{w}^*.$
- \bullet C also encodes the distance between D and \mathcal{D}_{r} .

Bounding the Norm of $w^* - \tilde{w}^*$

Certified Unlearning without Convexity

Constrained Learning

$$
w^*=\arg\min_{\|w\|_2\leq C}\mathcal{L}(w,\mathcal{D})\quad\text{and}\quad \tilde{w}^*=\arg\min_{\|w\|_2\leq C}\mathcal{L}(w,\mathcal{D}_r)
$$

• Due to the constraint, we have

$$
||w^* - \tilde{w}^*||_2 \le ||w^*||_2 + || - \tilde{w}^*||_2 \le 2C
$$

- If $|\mathcal{D}_u|$ is quite small, this makes sense, *i.e.,* $\mathcal{D} \approx \mathcal{D}_r \Rightarrow w^* \approx \tilde{w}^*.$
- \bullet C also encodes the distance between D and \mathcal{D}_r .
- Can you criticize?
	- ▶ Can we actually have small C for neural networks (as $||x||_2$ is proportional to the dimension of x)?

▶ ...

Approximation Error Bound

Main Theorem of This Paper

Theorem

We have

$$
\|\tilde{w} - \tilde{w}^*\|_2 \le \frac{2C(MC + \lambda)}{\lambda + \lambda_{\min}}.
$$

e Recall that

$$
\blacktriangleright w^* = \arg\min_{w \in \mathcal{C}} \|w\|_2 \leq C
$$

$$
\blacktriangleright \ \tilde{w} = w^* - (H_{w^*} + \lambda I)^{-1} \nabla \mathcal{L}(w^*, \mathcal{D}_r) \text{ with } \lambda > \|H_{w^*}\|_2
$$

- ► $\tilde{w}^* = \arg \min_{\|w\|_2 \leq C} \mathcal{L}(w^*, \mathcal{D}_r)$
- \triangleright λ_{\min} : the smallest eigenvalue of H_{w*}
- A few notes:
	- ▶ Can we unlearn with certification from any original model?
	- \blacktriangleright Is this data-dependent bound?

Efficient Hessian Computation

Proposition

Given x i.i.d. tained samples $\{X_1, \ldots, X_s\}$, we have $\{H_{1,\lambda}, \ldots, H_{s,\lambda}\}$ of the Hessian $H_{w^*} + \lambda I$, where $H_{i,\lambda} \coloneqq \nabla^2 \mathcal{L}(w^*,X_i) + \lambda I$, let

$$
\tilde{H}_{i,\lambda}^{-1} = I + \left(I - \frac{H_{i,\lambda}}{H}\right) \tilde{H}_{i-1,\lambda}^{-1},
$$

where $\tilde{H}_{0,\lambda}^{-1}=I$ and $\|\nabla^2 \ell(w^*,x)\|\leq H$ for all $x\in\mathcal{D}_r.$ Then, $\frac{\tilde{H}_{s,\lambda}^{-1}}{H}$ is an asymptotic unbiased estimator of the inverse Hessian $(H_{w^*} + \lambda I)^{-1}.$

- Reduces sample complexity, *i.e.*, we need only s samples instead of n samples.
- Is this effective with "data parallelization"?

Membership Inference Attack

Experiment

- Attack Acc $(=$ Attack F1 score) is as good as retraining.
- **•** Here, Attack means membership inference attacks, e.g.,
	- ▶ For $\{(z_i,b_i)\}$ where $z_i:=(x_i,y_i)$ and $b_i\in\{$ " $z_i\notin \mathcal{D}_{\sf train}$ ", " $z_i\in \mathcal{D}_{\sf unlearn}$ "}, an attacker h wins if $h(z_i)$ correctly predicts b_i

Unlearning Time

Experiment

 \bullet Efficient – note that the y-axis is log-scale.

Conclusion

• Proposes a certified unlearning method for deep models.

 \blacktriangleright (I guess) Mainly thanks to the bounded optimal solutions, *i.e.*,

$$
w^*=\arg\min_{\|w\|_2\leq C}\mathcal{L}(w,\mathcal{D})\quad\text{and}\quad \tilde{w}^*=\arg\min_{\|w\|_2\leq C}\mathcal{L}(w,\mathcal{D}_r).
$$

 \blacktriangleright The above implies

$$
||w^* - \tilde{w}^*||_2 \le 2C.
$$

 \bullet How can we minimize C ?

\n- Recall that
$$
\min_{\|w\|_2 \leq C} \mathcal{L}(w, \mathcal{D})
$$
\n- Recall that $\sigma \geq \frac{2C(MC+\lambda)}{\varepsilon(\lambda+\lambda_{\min})} \sqrt{2\ln\frac{1.25}{\delta}}$
\n- Larger $C \rightarrow$ larger noise $\sigma \rightarrow$ accuracy drop
\n

Reference I

- C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten. Certified data removal from machine learning models. In International Conference on Machine Learning, pages 3832–3842. PMLR, 2020.
- B. Zhang, Y. Dong, T. Wang, and J. Li. Towards certified unlearning for deep neural networks. arXiv preprint arXiv:2408.00920, 2024.