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Motivation

Certified removal [Guo et al., 2020] assumes strongly convex loss

Zhang et al. [2024] provides a direct extention of certified removal [Guo et al., 2020]
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Definition: Certified Unlearning

Definition ((ε, δ)-Certified Unlearning)

Let

D be a training set,

Du ⊂ D be an unlearning set,

Dr := D \ Du be a retain set,

H be a hypothesis space,

A be a learning algorithm.

Then, U is an ε-δ certified unlearning algorithm if and only if for all T ⊆ H, we have

P{U(D,Du,A(D)) ∈ T } ≤ eεP{A(Dr) ∈ T }+ δ

P{A(Dr) ∈ T } ≤ eεP{U(D,Du,A(D)) ∈ T }+ δ.
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Key Theorem for Certified Unlearning

Theorem

Let

w̃∗ := argminw∈H L(w,Dr),

w̃ := Uremove(w∗,Du,D), and

∥w̃ − w̃∗∥2 ≤ ∆.

Then,
Uhide(w∗,Du,D) := w̃ + Y

is an ε-δ certified unlearning if Y ∼ N (0, σ2I) and σ ≥ ∆
ε

√
2 ln 1.25

δ .

The key next step is bounding ∆.
▶ With convex models, boudning ∆ seems feasible.
▶ How about non-convex models?
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Algorithm
Certified Unlearning without Convexity

Algorithm: A Single-Step Newton Update

w̃∗ ≈ w̃ = w∗ −H−1
w∗∇L(w∗,Dr)

H: a set of models

D: an original training set

Du ⊂ D: an unlearned set

Dr := D \ Du: a retained set

w∗ := argminw∈H L(w,D): an optimal trained model – could be a local optimum

w̃∗ := argminw∈H L(w,Dr): an optimal unlearned model – could be a local optimum

w̃: an estimated unlearned model – why? due to the Taylor expansion of ∇L at w∗, i.e.,

∇L(w̃∗,Dr) ≈ ∇L(w∗,Dr) +Hw∗(w̃∗ − w∗)

Thus, 0 = ∇L(w̃∗,Dr) ≈ ∇L(w∗,Dr) +Hw∗(w̃∗ − w∗) implies the update rule.
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Main Direction
Certified Unlearning without Convexity

Bounding the approximation error ∥w̃ − w̃∗∥2. To this end, we need following assumptions.

Assumption 1

A loss function ℓ(w, x, y) has an L-Lipschitz gradient in w, i.e.,

∥∇L(w,D)∥2 ≤ L.

Assumption 2

A loss function ℓ(w, x, y) has an M -Lipschitz Hessian in w, i.e.,

∥Hw −Hw′∥2 ≤ M∥w − w′∥2.
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Approximation Error
Certified Unlearning without Convexity

Lemma

We have the following approximation error (given previously defined notations):

∥w̃ − w̃∗∥2 ≤
M

2
∥H−1

w∗ ∥2 · ∥w∗ − w̃∗∥22.

Note that the proof of this lemma does not need global optimality.
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Bounding the Norm of the Inverse Hessian
Certified Unlearning without Convexity

Update after Local Convex Approximation

w̃ = w∗ − (Hw∗ + λI)−1∇L(w∗,Dr)

Intuitively, we approximatly convert the non-convex objective to the strongly convex one.
▶ In general, ∥H−1

w∗ ∥2 is arbitrarly large.
▶ Add a small diagonal, i.e., ∥(Hw∗ + λI)−1∥2, equivalent to the Hessian of the regularized

objective, i.e., L(w,Dr) +
λ
2 ∥w∥

2
2

▶ At w∗, the regularized objective can be strongly convex for some λ.
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Bounding the Norm of w∗ − w̃∗

Certified Unlearning without Convexity

Constrained Learning

w∗ = arg min
∥w∥2≤C

L(w,D) and w̃∗ = arg min
∥w∥2≤C

L(w,Dr)

Due to the constraint, we have

∥w∗ − w̃∗∥2 ≤ ∥w∗∥2 + ∥ − w̃∗∥2 ≤ 2C

If |Du| is quite small, this makes sense, i.e., D ≈ Dr ⇒ w∗ ≈ w̃∗.

C also encodes the distance between D and Dr.

Can you criticize?
▶ Can we actually have small C for neural networks (as ∥x∥2 is proportional to the dimension

of x)?
▶ ...
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Approximation Error Bound
Main Theorem of This Paper

Theorem

We have

∥w̃ − w̃∗∥2 ≤
2C(MC + λ)

λ+ λmin
.

Recall that
▶ w∗ = argmin∥w∥2≤C
▶ w̃ = w∗ − (Hw∗ + λI)−1∇L(w∗,Dr) with λ > ∥Hw∗∥2
▶ w̃∗ = argmin∥w∥2≤C L(w∗,Dr)
▶ λmin: the smallest eigenvalue of Hw∗

A few notes:
▶ Can we unlearn with certification from any original model?
▶ Is this data-dependent bound?
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Efficient Hessian Computation

Proposition

Given x i.i.d. tained samples {X1, . . . , Xs}, we have {H1,λ, . . . ,Hs,λ} of the Hessian
Hw∗ + λI, where Hi,λ := ∇2L(w∗, Xi) + λI, let

H̃−1
i,λ = I +

(
I −

Hi,λ

H

)
H̃−1

i−1,λ,

where H̃−1
0,λ = I and ∥∇2ℓ(w∗, x)∥ ≤ H for all x ∈ Dr. Then,

H̃−1
s,λ

H is an asymptotic unbiased

estimator of the inverse Hessian (Hw∗ + λI)−1.

Reduces sample complexity, i.e., we need only s samples instead of n samples.

Is this effective with “data parallelization”?
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Membership Inference Attack
Experiment

Attack Acc (= Attack F1 score) is as good as retraining.

Here, Attack means membership inference attacks, e.g.,
▶ For {(zi, bi)} where zi := (xi, yi) and bi ∈ {“zi /∈ Dtrain”, “zi ∈ Dunlearn”}, an attacker h

wins if h(zi) correctly predicts bi
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Unlearning Time
Experiment

Efficient – note that the y-axis is log-scale.

13 / 15



Conclusion

Proposes a certified unlearning method for deep models.
▶ (I guess) Mainly thanks to the bounded optimal solutions, i.e.,

w∗ = arg min
∥w∥2≤C

L(w,D) and w̃∗ = arg min
∥w∥2≤C

L(w,Dr).

▶ The above implies
∥w∗ − w̃∗∥2 ≤ 2C.

How can we minimize C?
▶ Recall that min∥w∥2≤C L(w,D)

▶ Recall that σ ≥ 2C(MC+λ)
ε(λ+λmin)

√
2 ln 1.25

δ

▶ Larger C → larger noise σ → accruacy drop
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