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Why Unlearning?

@ Remove sensitive or private data from a trained model
@ Remove data for data-poisoning attacks

2/22



Certified Removal with A Linear Assumption

e ICML20

@ The term “machine unlearning” seems to firstly appear in Cao and Yang [2015].
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Abstract

Good data stewardship requires removal of data
at the request of the data’s owner. This raises the
question if and how a trained machine-learning
‘model, which implicitly stores information about
its training data, should be affected by such a re-
‘moval request. s it possible to “remove” data
from a machine-learning model? We study this
problem by defining certified removal: a very
strong theoretical guarantee that a model from
which data is removed cannot be distinguished
from a model that never observed the data to begin
with. We develop a certified-removal mechanism
for linear classifiers and empirically study learn-
ing settings in which this mechanism is practical.

inference attacks (Yeom et al., 2018; Carlini et al., 2019) are
unsuccessful on data that was removed from the model. We
emphasize that certified removal is a very strong notion of
removal; in practical applications, less constraining notions
may equally fulfill the data owner’s expectation of removal.

We develop a certified-removal mechanism for Lo-
regularized linear models that are trained using a differ-
entiable convex loss function, e.g., logistic regressors. Our
removal mechanism applies a Newton step on the model
parameters that largely removes the influence of the deleted
data point; the residual error of this mechanism decreases
quadratically with the size of the training set. To ensure
that an adversary cannot extract information from the small
residual (i.e., to certify removal), we mask the residual us-
ing an approach that randomly perturbs the training loss
(Chaudhuri et al., 2011). We empirically study in which
settings the removal mechanism is practical.

@ Quite early (and | guess the first) certified removal work.
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Overview on Key ldeas

@ Desire to remove a labeled example from a trained parametric model.
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Overview on Key ldeas

@ Desire to remove a labeled example from a trained parametric model.
» This task is trivial for non-parametric models.

@ The parameter of the pre-trained model embeds the information of the target labeled
example.
© How to remove unlearning this?

> learning: gradient descent
> unlearning: gradient ascent

@ Gradient “ascent” almost remove this information, but not perfect.

@ Let's also add noise to hide the remaining information.
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Definition: =-Certified Removal

Given € > 0, we say that removal mechanism M performs e-certified removal (e-CR) for a
learning algorithm Aif VI CH,DC Z,2€ D

P{M(A(D),D,») €T} _ .
=T PAD\)eT) O

=&

where the probability is taken over the randomness of A.

e: an unlearning parameter.

X example space

Y: label space

Z=Xx)

D C Z: a training set

H: a hypothesis set

A :D — H: a (randomized) learning algorithm

In short, we wish to have M (A(D),D,z) ~ A(D\ 2)

®© 6 6 6 6 6 o o
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Definition: (¢, §)-Certified Removal

Given &,9 > 0, we say that removal mechanism M performs (e, d)-certified removal for a
learning algorithm Aif VI CH,DC Z,2€ D

P{M(A(D),D,z) e T} <eP{A(D\z2)€T}+46 and
P{A(D\z2) € T} <eP{M(A(D),D,z) € T} +.
@ ¢ upper bounds the failure probability of

P{M(A(D),D,Z)GT} < o
ST PAD\)eT) -

—&
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Candidate Method: Exact Removal

Exact Removal

o M is trivially 0-CR.
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Candidate Method: Exact Removal

Exact Removal
M(A(D),D,z) = A(D\ 2)

o M is trivially 0-CR.
O < P{A(D\2) € T} <0
“P{A(D\2)eT} ~

@ Impractical as we need to retrain a model whenever a training sample is removed.
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Candidate Method: Differential Privacy

Differential Privacy (DP)
A is e-differentially private if for any 7 C H, D, and D/,

= PlAD) €T} _ .
©EPAD ey =

where D and D’ differ in only one sample.
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Differential Privacy (DP)
A is e-differentially private if for any 7 C H, D, and D/,

PUAD ET) _ .
SPADYeT) =
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where D and D’ differ in only one sample.

@ The DP of A is a sufficient condition for certified removal by setting M as an identity
function.

» A never memorizes a training sample, so we don't need to worry about removing it.
» But, DP requires retraining and usually introduces poor performance.

@ However, the DP of A is not a necessary condition for certified removal.
> A nearest-neighbor classifier is not differentially private but it can be 0-CR.
@ “Retraining from scratch” and “DP" are two extreme removal methods (in removal
efficiency).
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Removal Mechanism: Setup

D = {(x1,y1),--.,(Tn,yn)}: a training set
Consider a linear classifier.

Learning objective: regularized empirical risk minimization, i.e.,
- An
L(w; D) = Z;E(wTﬂfuyi) + 5 lwllz,
1=

where /£ is a convex loss function differentiable everywhere.

@ w*: an optimal and unique classifier, i.e.,

w* == argmin L(w; D) := A(D).

Goal: given a training sample (z,y) to remove, find w™ such that

w” = AD\{(z,9)})
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(Not Yet Certified) Removal Mechanism
Newton update removal mechanism M
w™ = M(w*, D, (Tn,yn)) = w* + H I A
e WLOG, remove the last sample (xy,, yy)
o A = \w* + VL((w*) 2, y,): the loss gradient at a sample (2, yy)

e Hy» = V2L(w*;D'): the Hessian of L(:,D’) at w*
o H_!'A: aka. the influence function of (x,,¥y,) on w* [Koh and Liang, 2017]
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w™ = M(w*, D, (Tn,yn)) = w* + H I A

e WLOG, remove the last sample (xy,, yy)

o A = \w* + VL((w*) 2, y,): the loss gradient at a sample (2, yy)

e Hy» = V2L(w*;D'): the Hessian of L(:,D’) at w*

o H_!'A: aka. the influence function of (x,,¥y,) on w* [Koh and Liang, 2017]
°

Similar to the Newton's update, i.e.,

-1
Wi41 = Wt — (VQE(w?l’n, yn)) vg(wz$nayn)

» The Newton's update: learn (z,, yn)
» The Newton's update removal mechanism: unlearn (x,,,yy)

@ Why Newton? Fast removal (i.e., removal with one step update)
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Measuring the Failure of Unlearning

Gradient residual
[VL(w™;D")l2
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Measuring the Failure of Unlearning

Gradient residual
[VL(w™;D")l2

In the strongly convex setup, the gradient completely characterizes unlearning.

If VL(w™;D') =0, w™ is the unique minimizer of L(-;D’), implying successfully
unlearned!

This also means |[VL(w™;D’)||2 is the measure of “unlearning error”.

Can we bound this quantity?
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Bound on the Failure of Unlearning
Theorem

Suppose that |V {(w”z;, ;)2 < C for any (z;,y;) and w, £" is y-Lipschitz, and ||z;||2 < 1 for
all x;. Then, we have

_ 4vC?
D < —.
IV D)l < 5
o logistic regression: C'=1 and v = % when {(w”z,y) = —log o (yw’)

@ See the paper for the data-dependent bound.
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Claim: the gradient may leak information on the unlearned sample.

Consider D = {(e1,1),...,(eq,d)}, where e; for 1 <4 < d are the standard basis vectors.
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@ 6 6 o
v
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Claim: the gradient may leak information on the unlearned sample.
Consider D = {(e1,1),...,(eq,d)}, where e; for 1 <4 < d are the standard basis vectors.
» The regressor is initialized with zero.
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Bound on the Failure of Unlearning
Theorem

Suppose that |V {(w”z;, ;)2 < C for any (z;,y;) and w, £" is y-Lipschitz, and ||z;||2 < 1 for
all x;. Then, we have

_ 4vC?
D < ———.
IV D)l < 35—
logistic regression: C' =1 and v = i when f(w!'z,y) = —log o (yw™)

See the paper for the data-dependent bound.
As n — oo, ||[V(w™;D')||2 = 0. Is it enough?
Claim: the gradient may leak information on the unlearned sample.
Consider D = {(e1,1),...,(eq,d)}, where e; for 1 <4 < d are the standard basis vectors.
» The regressor is initialized with zero.
w; # 0if (e;,4) is included in D.
» An approximate removal will still leave w; small.
» 1 (w; # 0) indicates the existence of (e;,7) € D.
Not easy to remove; then how to hide this leaked information?
» Add noise!

@ 6 6 o
v

v
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Loss Perturbation

Perturbed empirical risk

n n
Ly(w; D) = Zf(wTﬂﬁi, yi) + 7““1”% + 0w
=1

@ b is randomly drawn from some distribution (i.e., draw b and optimize)

e bTw: Add noise during training time.
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Loss Perturbation

Perturbed empirical risk

n n
Ly(w; D) = Zf(wTﬂﬁi, yi) + 7“1’1”% + 0w
=1

@ b is randomly drawn from some distribution (i.e., draw b and optimize)

e bTw: Add noise during training time.
» This masks the information in the gradient residual VL, (w™;D’)!.
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Gradient Residual of Loss Perturbation

Perturbed gradient residual

n—1
VLy(w;D') = Z Ve(wTzs, y;) + AMn — Dw +b
i=1

VL(w;D’)

o (before) VL(w*; D") = 0 is possible but VL(w™;D") = 0 is not easy for fast/approximate
removal.
» w* = argmin,, L(w;D’)
» w: the Newton removal mechanism w.r.t. L
o (after) Have VL(w*; D) = —b such that VL(w™;D’) # 0 does not leak information.
» w* = argmin,, Ly(w;D’)
» w~: the Newton removal mechanism w.r.t. L
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(Finally) e-Certified Removal

Theorem

Let A be the learning algorithm that minimizes Ly(w; D) and M be the Newton update
removal mechanism. Suppose that ||V{(wT x;,y;)||2 < C for any (z;,y;) and w, ¢" is

~-Lipschitz, and ||z;l|la < 1 for all z;. Ifb ~ p(b) x e~ I%12 (where &/ = )\ngC_Ql)) and
|br — ba||2 < &’ then M is e-CR for A.
@ £: a user-specified unlearning parameter.

o b~ p(b) xx e P2 and [|by — by||» < €: e.g., drawing from a distribution with a
constraint (realistic?)

» A high-probable CR definition in the paper can relax the constraint on the distribution.
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(Finally) Certified Removal: A Proof Sketch

@ Recall the certified removal (CR) definition:

P{M(A(D),D,z) e T} P{w €T} ; R
P{AD)eT}  PlweT)

Here, the probability is taken over the randomness of the algorithm.
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P{M(A(D),D,z) e T} P{w €T} ; R
P{AD)eT}  PlweT)

Here, the probability is taken over the randomness of the algorithm.

@ The randomness is from the loss perturbation by b. Suppose b1, b2 ~ p(b) x e~ =it
Then,
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(Finally) Certified Removal: A Proof Sketch
@ Recall the certified removal (CR) definition:
P{M(A(D),D,z) e T} P{w €T} ; o
P{A(D) €T} - P{wreT})
Here, the probability is taken over the randomness of the algorithm.
@ The randomness is from the loss perturbation by b. Suppose b1, b2 ~ p(b) x P
Then,

Ibll2

POU — exp { = (Ioall — eall)} = exp {5 (lballo — )}

9
<exp{ (b= bifl2) | =

@ From Theorem 2 of the paper,

p(b1) . P{w= €T} .
) =0 T PlreT) =
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(¢, 9)-Certified Removal

Theorem

Let A be the learning algorithm that minimizes Ly(w; D) and M be the Newton update
removal mechanism. Suppose that ||V{(w T z;,y;)||2 < C for any (z;,y;) and w, £" is

v-Lipschitz, and ||x;||2 < 1 for all z;. Ifb~ N(0, c%/) with ¢ > 0 (where &’ )\32021 ), then
M is (¢,8)-CR for A with § = 1.5¢=¢"/2.

@ More complex but more practical
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Results: Fast

Dataset ‘ MNIST (§4.1) LSUN (§4.2) SST (84.2) SVHN (§4.3)
Removal setting CR Linear Public Extractor + CR Linear  Public Extractor + CR Linear DP Extractor + CR Linear
Removal time 0.04s 0.48s 0.07s 0.27s

Training time ‘ 15.6s 124s 61.5s 1.5h

@ Removal on the last linear layer

o Faster than retraining
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Results: Easy v.s. Hard

- [HE BB HEEE SR
s £ 12131213121313]3] ¢

Recall the Newton update removal:

w = M(w*, D, (xn,yn)) = w* + H;,}A

Top 10: 10 examples with higher || H ' Al
Bottom 10: 10 examples with lower || H_ Al
Unusual samples are not easy to undo!

» Removing outliers is harder.
» The model tends to memorize unusual samples.
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Results: CR v.s. DP

20

1Y)

I

5

370

o

<

t 60

0

=
50 —=—- Non-private Baseline

—e— DP Extractor + CR Linear
40 DP Extractor + DP Linear
0 1 2 3 4 5 6

€ = Epp + Ecr

@ Why not simply use DP?
» CR Linear (from minimization of perturbed loss) is more accurate than DP Linear; looks
better than DP. Why?
@ Why not use non-DP extractor?
20/ 22



Conclusion

@ How to evaluate the success of unlearning?
@ Is the linear assumption critical?
» We can remove data from the last linear layer of a deep network, which seems to be enough?

@ We need to retrain a linear model with noise; not useful?
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