
Trustworthy Machine Learning
Unlearning 1

Sangdon Park

POSTECH

1 / 22



Why Unlearning?

Remove sensitive or private data from a trained model

Remove data for data-poisoning attacks

...

2 / 22



Certified Removal with A Linear Assumption

ICML20
The term “machine unlearning” seems to firstly appear in Cao and Yang [2015].
Quite early (and I guess the first) certified removal work.

3 / 22



Overview on Key Ideas

1 Desire to remove a labeled example from a trained parametric model.
▶ This task is trivial for non-parametric models.

2 The parameter of the pre-trained model embeds the information of the target labeled
example.

3 How to remove unlearning this?
▶ learning: gradient descent
▶ unlearning: gradient ascent

4 Gradient “ascent” almost remove this information, but not perfect.

5 Let’s also add noise to hide the remaining information.

4 / 22



Overview on Key Ideas

1 Desire to remove a labeled example from a trained parametric model.
▶ This task is trivial for non-parametric models.

2 The parameter of the pre-trained model embeds the information of the target labeled
example.

3 How to remove unlearning this?
▶ learning: gradient descent
▶ unlearning: gradient ascent

4 Gradient “ascent” almost remove this information, but not perfect.

5 Let’s also add noise to hide the remaining information.

4 / 22



Overview on Key Ideas

1 Desire to remove a labeled example from a trained parametric model.
▶ This task is trivial for non-parametric models.

2 The parameter of the pre-trained model embeds the information of the target labeled
example.

3 How to remove unlearning this?
▶ learning: gradient descent
▶ unlearning: gradient ascent

4 Gradient “ascent” almost remove this information, but not perfect.

5 Let’s also add noise to hide the remaining information.

4 / 22



Overview on Key Ideas

1 Desire to remove a labeled example from a trained parametric model.
▶ This task is trivial for non-parametric models.

2 The parameter of the pre-trained model embeds the information of the target labeled
example.

3 How to remove unlearning this?
▶ learning: gradient descent
▶ unlearning: gradient ascent

4 Gradient “ascent” almost remove this information, but not perfect.

5 Let’s also add noise to hide the remaining information.

4 / 22



Overview on Key Ideas

1 Desire to remove a labeled example from a trained parametric model.
▶ This task is trivial for non-parametric models.

2 The parameter of the pre-trained model embeds the information of the target labeled
example.

3 How to remove unlearning this?
▶ learning: gradient descent
▶ unlearning: gradient ascent

4 Gradient “ascent” almost remove this information, but not perfect.

5 Let’s also add noise to hide the remaining information.

4 / 22



Overview on Key Ideas

1 Desire to remove a labeled example from a trained parametric model.
▶ This task is trivial for non-parametric models.

2 The parameter of the pre-trained model embeds the information of the target labeled
example.

3 How to remove unlearning this?
▶ learning: gradient descent
▶ unlearning: gradient ascent

4 Gradient “ascent” almost remove this information, but not perfect.

5 Let’s also add noise to hide the remaining information.

4 / 22



Overview on Key Ideas

1 Desire to remove a labeled example from a trained parametric model.
▶ This task is trivial for non-parametric models.

2 The parameter of the pre-trained model embeds the information of the target labeled
example.

3 How to remove unlearning this?
▶ learning: gradient descent
▶ unlearning: gradient ascent

4 Gradient “ascent” almost remove this information, but not perfect.

5 Let’s also add noise to hide the remaining information.

4 / 22



Overview on Key Ideas

1 Desire to remove a labeled example from a trained parametric model.
▶ This task is trivial for non-parametric models.

2 The parameter of the pre-trained model embeds the information of the target labeled
example.

3 How to remove unlearning this?
▶ learning: gradient descent
▶ unlearning: gradient ascent

4 Gradient “ascent” almost remove this information, but not perfect.

5 Let’s also add noise to hide the remaining information.

4 / 22



Definition: ε-Certified Removal

Given ε > 0, we say that removal mechanism M performs ε-certified removal (ε-CR) for a
learning algorithm A if ∀T ⊆ H,D ⊆ Z, z ∈ D

e−ε ≤ P{M(A(D),D, z) ∈ T }
P{A(D \ z) ∈ T }

≤ eε,

where the probability is taken over the randomness of A.

ε: an unlearning parameter.

X : example space

Y: label space

Z := X × Y
D ⊆ Z: a training set

H: a hypothesis set

A : D → H: a (randomized) learning algorithm

In short, we wish to have M(A(D),D, z) ≈ A(D \ z)
5 / 22



Definition: (ε, δ)-Certified Removal

Given ε, δ > 0, we say that removal mechanism M performs (ε, δ)-certified removal for a
learning algorithm A if ∀T ⊆ H,D ⊆ Z, z ∈ D

P{M(A(D),D, z) ∈ T } ≤ eεP{A(D \ z) ∈ T }+ δ and

P{A(D \ z) ∈ T } ≤ eεP{M(A(D),D, z) ∈ T }+ δ.

δ upper bounds the failure probability of

e−ε ≤ P{M(A(D),D, z) ∈ T }
P{A(D \ z) ∈ T }

≤ eε,

6 / 22



Candidate Method: Exact Removal

Exact Removal

M(A(D),D, z) := A(D \ z)

M is trivially 0-CR.

e0 ≤ P{A(D \ z) ∈ T }
P{A(D \ z) ∈ T }

≤ e0,

Impractical as we need to retrain a model whenever a training sample is removed.

7 / 22



Candidate Method: Exact Removal

Exact Removal

M(A(D),D, z) := A(D \ z)

M is trivially 0-CR.

e0 ≤ P{A(D \ z) ∈ T }
P{A(D \ z) ∈ T }

≤ e0,

Impractical as we need to retrain a model whenever a training sample is removed.

7 / 22



Candidate Method: Differential Privacy

Differential Privacy (DP)

A is ε-differentially private if for any T ⊆ H, D, and D′,

e−ε ≤ P{A(D) ∈ T }
P{A(D′) ∈ T }

≤ eε,

where D and D′ differ in only one sample.

The DP of A is a sufficient condition for certified removal by setting M as an identity
function.

▶ A never memorizes a training sample, so we don’t need to worry about removing it.
▶ But, DP requires retraining and usually introduces poor performance.

However, the DP of A is not a necessary condition for certified removal.
▶ A nearest-neighbor classifier is not differentially private but it can be 0-CR.

“Retraining from scratch” and “DP” are two extreme removal methods (in removal
efficiency).

8 / 22



Candidate Method: Differential Privacy

Differential Privacy (DP)

A is ε-differentially private if for any T ⊆ H, D, and D′,

e−ε ≤ P{A(D) ∈ T }
P{A(D′) ∈ T }

≤ eε,

where D and D′ differ in only one sample.

The DP of A is a sufficient condition for certified removal by setting M as an identity
function.

▶ A never memorizes a training sample, so we don’t need to worry about removing it.
▶ But, DP requires retraining and usually introduces poor performance.

However, the DP of A is not a necessary condition for certified removal.
▶ A nearest-neighbor classifier is not differentially private but it can be 0-CR.

“Retraining from scratch” and “DP” are two extreme removal methods (in removal
efficiency).

8 / 22



Candidate Method: Differential Privacy

Differential Privacy (DP)

A is ε-differentially private if for any T ⊆ H, D, and D′,

e−ε ≤ P{A(D) ∈ T }
P{A(D′) ∈ T }

≤ eε,

where D and D′ differ in only one sample.

The DP of A is a sufficient condition for certified removal by setting M as an identity
function.

▶ A never memorizes a training sample, so we don’t need to worry about removing it.
▶ But, DP requires retraining and usually introduces poor performance.

However, the DP of A is not a necessary condition for certified removal.
▶ A nearest-neighbor classifier is not differentially private but it can be 0-CR.

“Retraining from scratch” and “DP” are two extreme removal methods (in removal
efficiency).

8 / 22



Candidate Method: Differential Privacy

Differential Privacy (DP)

A is ε-differentially private if for any T ⊆ H, D, and D′,

e−ε ≤ P{A(D) ∈ T }
P{A(D′) ∈ T }

≤ eε,

where D and D′ differ in only one sample.

The DP of A is a sufficient condition for certified removal by setting M as an identity
function.

▶ A never memorizes a training sample, so we don’t need to worry about removing it.
▶ But, DP requires retraining and usually introduces poor performance.

However, the DP of A is not a necessary condition for certified removal.
▶ A nearest-neighbor classifier is not differentially private but it can be 0-CR.

“Retraining from scratch” and “DP” are two extreme removal methods (in removal
efficiency).

8 / 22



Candidate Method: Differential Privacy

Differential Privacy (DP)

A is ε-differentially private if for any T ⊆ H, D, and D′,

e−ε ≤ P{A(D) ∈ T }
P{A(D′) ∈ T }

≤ eε,

where D and D′ differ in only one sample.

The DP of A is a sufficient condition for certified removal by setting M as an identity
function.

▶ A never memorizes a training sample, so we don’t need to worry about removing it.
▶ But, DP requires retraining and usually introduces poor performance.

However, the DP of A is not a necessary condition for certified removal.
▶ A nearest-neighbor classifier is not differentially private but it can be 0-CR.

“Retraining from scratch” and “DP” are two extreme removal methods (in removal
efficiency).

8 / 22



Candidate Method: Differential Privacy

Differential Privacy (DP)

A is ε-differentially private if for any T ⊆ H, D, and D′,

e−ε ≤ P{A(D) ∈ T }
P{A(D′) ∈ T }

≤ eε,

where D and D′ differ in only one sample.

The DP of A is a sufficient condition for certified removal by setting M as an identity
function.

▶ A never memorizes a training sample, so we don’t need to worry about removing it.
▶ But, DP requires retraining and usually introduces poor performance.

However, the DP of A is not a necessary condition for certified removal.
▶ A nearest-neighbor classifier is not differentially private but it can be 0-CR.

“Retraining from scratch” and “DP” are two extreme removal methods (in removal
efficiency).

8 / 22



Removal Mechanism: Setup
D := {(x1, y1), . . . , (xn, yn)}: a training set

Consider a linear classifier.

Learning objective: regularized empirical risk minimization, i.e.,

L(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22,

where ℓ is a convex loss function differentiable everywhere.

w∗: an optimal and unique classifier, i.e.,

w∗ := argmin
w

L(w;D) := A(D).

Goal: given a training sample (x, y) to remove, find w− such that

w− ≈ A(D \ {(x, y)})

9 / 22



Removal Mechanism: Setup
D := {(x1, y1), . . . , (xn, yn)}: a training set

Consider a linear classifier.

Learning objective: regularized empirical risk minimization, i.e.,

L(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22,

where ℓ is a convex loss function differentiable everywhere.

w∗: an optimal and unique classifier, i.e.,

w∗ := argmin
w

L(w;D) := A(D).

Goal: given a training sample (x, y) to remove, find w− such that

w− ≈ A(D \ {(x, y)})

9 / 22



Removal Mechanism: Setup
D := {(x1, y1), . . . , (xn, yn)}: a training set

Consider a linear classifier.

Learning objective: regularized empirical risk minimization, i.e.,

L(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22,

where ℓ is a convex loss function differentiable everywhere.

w∗: an optimal and unique classifier, i.e.,

w∗ := argmin
w

L(w;D) := A(D).

Goal: given a training sample (x, y) to remove, find w− such that

w− ≈ A(D \ {(x, y)})

9 / 22



Removal Mechanism: Setup
D := {(x1, y1), . . . , (xn, yn)}: a training set

Consider a linear classifier.

Learning objective: regularized empirical risk minimization, i.e.,

L(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22,

where ℓ is a convex loss function differentiable everywhere.

w∗: an optimal and unique classifier, i.e.,

w∗ := argmin
w

L(w;D) := A(D).

Goal: given a training sample (x, y) to remove, find w− such that

w− ≈ A(D \ {(x, y)})

9 / 22



Removal Mechanism: Setup
D := {(x1, y1), . . . , (xn, yn)}: a training set

Consider a linear classifier.

Learning objective: regularized empirical risk minimization, i.e.,

L(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22,

where ℓ is a convex loss function differentiable everywhere.

w∗: an optimal and unique classifier, i.e.,

w∗ := argmin
w

L(w;D) := A(D).

Goal: given a training sample (x, y) to remove, find w− such that

w− ≈ A(D \ {(x, y)})

9 / 22



Removal Mechanism: Setup
D := {(x1, y1), . . . , (xn, yn)}: a training set

Consider a linear classifier.

Learning objective: regularized empirical risk minimization, i.e.,

L(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22,

where ℓ is a convex loss function differentiable everywhere.

w∗: an optimal and unique classifier, i.e.,

w∗ := argmin
w

L(w;D) := A(D).

Goal: given a training sample (x, y) to remove, find w− such that

w− ≈ A(D \ {(x, y)})

9 / 22



(Not Yet Certified) Removal Mechanism

Newton update removal mechanism M

w− = M(w∗,D, (xn, yn)) := w∗ +H−1
w∗∆

WLOG, remove the last sample (xn, yn)

∆ := λw∗ +∇ℓ((w∗)Txn, yn): the loss gradient at a sample (xn, yn)

Hw∗ := ∇2L(w∗;D′): the Hessian of L(·,D′) at w∗

H−1
w∗∆: a.k.a. the influence function of (xn, yn) on w∗ [Koh and Liang, 2017]

Similar to the Newton’s update, i.e.,

wt+1 = wt −
(
∇2ℓ(wT

t xn, yn)
)−1∇ℓ(wT

t xn, yn)

▶ The Newton’s update: learn (xn, yn)
▶ The Newton’s update removal mechanism: unlearn (xn, yn)

Why Newton? Fast removal (i.e., removal with one step update)
10 / 22



(Not Yet Certified) Removal Mechanism

Newton update removal mechanism M

w− = M(w∗,D, (xn, yn)) := w∗ +H−1
w∗∆

WLOG, remove the last sample (xn, yn)

∆ := λw∗ +∇ℓ((w∗)Txn, yn): the loss gradient at a sample (xn, yn)

Hw∗ := ∇2L(w∗;D′): the Hessian of L(·,D′) at w∗

H−1
w∗∆: a.k.a. the influence function of (xn, yn) on w∗ [Koh and Liang, 2017]

Similar to the Newton’s update, i.e.,

wt+1 = wt −
(
∇2ℓ(wT

t xn, yn)
)−1∇ℓ(wT

t xn, yn)

▶ The Newton’s update: learn (xn, yn)
▶ The Newton’s update removal mechanism: unlearn (xn, yn)

Why Newton? Fast removal (i.e., removal with one step update)
10 / 22



(Not Yet Certified) Removal Mechanism

Newton update removal mechanism M

w− = M(w∗,D, (xn, yn)) := w∗ +H−1
w∗∆

WLOG, remove the last sample (xn, yn)

∆ := λw∗ +∇ℓ((w∗)Txn, yn): the loss gradient at a sample (xn, yn)

Hw∗ := ∇2L(w∗;D′): the Hessian of L(·,D′) at w∗

H−1
w∗∆: a.k.a. the influence function of (xn, yn) on w∗ [Koh and Liang, 2017]

Similar to the Newton’s update, i.e.,

wt+1 = wt −
(
∇2ℓ(wT

t xn, yn)
)−1∇ℓ(wT

t xn, yn)

▶ The Newton’s update: learn (xn, yn)
▶ The Newton’s update removal mechanism: unlearn (xn, yn)

Why Newton? Fast removal (i.e., removal with one step update)
10 / 22



Measuring the Failure of Unlearning

Gradient residual

∥∇L(w−;D′)∥2

In the strongly convex setup, the gradient completely characterizes unlearning.

If ∇L(w−;D′) = 0, w− is the unique minimizer of L(·;D′), implying successfully
unlearned!

This also means ∥∇L(w−;D′)∥2 is the measure of “unlearning error”.

Can we bound this quantity?

11 / 22



Measuring the Failure of Unlearning

Gradient residual

∥∇L(w−;D′)∥2

In the strongly convex setup, the gradient completely characterizes unlearning.

If ∇L(w−;D′) = 0, w− is the unique minimizer of L(·;D′), implying successfully
unlearned!

This also means ∥∇L(w−;D′)∥2 is the measure of “unlearning error”.

Can we bound this quantity?

11 / 22



Measuring the Failure of Unlearning

Gradient residual

∥∇L(w−;D′)∥2

In the strongly convex setup, the gradient completely characterizes unlearning.

If ∇L(w−;D′) = 0, w− is the unique minimizer of L(·;D′), implying successfully
unlearned!

This also means ∥∇L(w−;D′)∥2 is the measure of “unlearning error”.

Can we bound this quantity?

11 / 22



Measuring the Failure of Unlearning

Gradient residual

∥∇L(w−;D′)∥2

In the strongly convex setup, the gradient completely characterizes unlearning.

If ∇L(w−;D′) = 0, w− is the unique minimizer of L(·;D′), implying successfully
unlearned!

This also means ∥∇L(w−;D′)∥2 is the measure of “unlearning error”.

Can we bound this quantity?

11 / 22



Bound on the Failure of Unlearning

Theorem

Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is γ-Lipschitz, and ∥xi∥2 ≤ 1 for
all xi. Then, we have

∥∇(w−;D′)∥2 ≤
4γC2

λ2(n− 1)
.

logistic regression: C = 1 and γ = 1
4 when ℓ(wTx, y) = − log σ(ywT )

See the paper for the data-dependent bound.
As n → ∞, ∥∇(w−;D′)∥2 → 0. Is it enough?
Claim: the gradient may leak information on the unlearned sample.

▶ Consider D = {(e1, 1), . . . , (ed, d)}, where ei for 1 ≤ i ≤ d are the standard basis vectors.
▶ The regressor is initialized with zero.
▶ wi ̸= 0 if (ei, i) is included in D.
▶ An approximate removal will still leave wi small.
▶ 1 (wi ̸= 0) indicates the existence of (ei, i) ∈ D.

Not easy to remove; then how to hide this leaked information?
▶ Add noise!

12 / 22



Bound on the Failure of Unlearning

Theorem

Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is γ-Lipschitz, and ∥xi∥2 ≤ 1 for
all xi. Then, we have

∥∇(w−;D′)∥2 ≤
4γC2

λ2(n− 1)
.

logistic regression: C = 1 and γ = 1
4 when ℓ(wTx, y) = − log σ(ywT )

See the paper for the data-dependent bound.
As n → ∞, ∥∇(w−;D′)∥2 → 0. Is it enough?
Claim: the gradient may leak information on the unlearned sample.

▶ Consider D = {(e1, 1), . . . , (ed, d)}, where ei for 1 ≤ i ≤ d are the standard basis vectors.
▶ The regressor is initialized with zero.
▶ wi ̸= 0 if (ei, i) is included in D.
▶ An approximate removal will still leave wi small.
▶ 1 (wi ̸= 0) indicates the existence of (ei, i) ∈ D.

Not easy to remove; then how to hide this leaked information?
▶ Add noise!

12 / 22



Bound on the Failure of Unlearning

Theorem

Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is γ-Lipschitz, and ∥xi∥2 ≤ 1 for
all xi. Then, we have

∥∇(w−;D′)∥2 ≤
4γC2

λ2(n− 1)
.

logistic regression: C = 1 and γ = 1
4 when ℓ(wTx, y) = − log σ(ywT )

See the paper for the data-dependent bound.
As n → ∞, ∥∇(w−;D′)∥2 → 0. Is it enough?
Claim: the gradient may leak information on the unlearned sample.

▶ Consider D = {(e1, 1), . . . , (ed, d)}, where ei for 1 ≤ i ≤ d are the standard basis vectors.
▶ The regressor is initialized with zero.
▶ wi ̸= 0 if (ei, i) is included in D.
▶ An approximate removal will still leave wi small.
▶ 1 (wi ̸= 0) indicates the existence of (ei, i) ∈ D.

Not easy to remove; then how to hide this leaked information?
▶ Add noise!

12 / 22



Bound on the Failure of Unlearning

Theorem

Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is γ-Lipschitz, and ∥xi∥2 ≤ 1 for
all xi. Then, we have

∥∇(w−;D′)∥2 ≤
4γC2

λ2(n− 1)
.

logistic regression: C = 1 and γ = 1
4 when ℓ(wTx, y) = − log σ(ywT )

See the paper for the data-dependent bound.
As n → ∞, ∥∇(w−;D′)∥2 → 0. Is it enough?
Claim: the gradient may leak information on the unlearned sample.

▶ Consider D = {(e1, 1), . . . , (ed, d)}, where ei for 1 ≤ i ≤ d are the standard basis vectors.
▶ The regressor is initialized with zero.
▶ wi ̸= 0 if (ei, i) is included in D.
▶ An approximate removal will still leave wi small.
▶ 1 (wi ̸= 0) indicates the existence of (ei, i) ∈ D.

Not easy to remove; then how to hide this leaked information?
▶ Add noise!

12 / 22



Bound on the Failure of Unlearning

Theorem

Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is γ-Lipschitz, and ∥xi∥2 ≤ 1 for
all xi. Then, we have

∥∇(w−;D′)∥2 ≤
4γC2

λ2(n− 1)
.

logistic regression: C = 1 and γ = 1
4 when ℓ(wTx, y) = − log σ(ywT )

See the paper for the data-dependent bound.
As n → ∞, ∥∇(w−;D′)∥2 → 0. Is it enough?
Claim: the gradient may leak information on the unlearned sample.

▶ Consider D = {(e1, 1), . . . , (ed, d)}, where ei for 1 ≤ i ≤ d are the standard basis vectors.
▶ The regressor is initialized with zero.
▶ wi ̸= 0 if (ei, i) is included in D.
▶ An approximate removal will still leave wi small.
▶ 1 (wi ̸= 0) indicates the existence of (ei, i) ∈ D.

Not easy to remove; then how to hide this leaked information?
▶ Add noise!

12 / 22



Loss Perturbation

Perturbed empirical risk

Lb(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22 + bTw

b is randomly drawn from some distribution (i.e., draw b and optimize)

bTw: Add noise during training time.
▶ This masks the information in the gradient residual ∇Lb(w

−;D′)!.

13 / 22



Loss Perturbation

Perturbed empirical risk

Lb(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22 + bTw

b is randomly drawn from some distribution (i.e., draw b and optimize)

bTw: Add noise during training time.
▶ This masks the information in the gradient residual ∇Lb(w

−;D′)!.

13 / 22



Gradient Residual of Loss Perturbation

Perturbed gradient residual

∇Lb(w;D′) =

n−1∑
i=1

∇ℓ(wTxi, yi) + λ(n− 1)w︸ ︷︷ ︸
∇L(w;D′)

+b

(before) ∇L(w∗;D′) = 0 is possible but ∇L(w−;D′) = 0 is not easy for fast/approximate
removal.

▶ w∗ = argminw L(w;D′)
▶ w−: the Newton removal mechanism w.r.t. L

(after) Have ∇L(w∗;D′) = −b such that ∇L(w−;D′) ̸= 0 does not leak information.
▶ w∗ = argminw Lb(w;D′)
▶ w−: the Newton removal mechanism w.r.t. L

14 / 22



(Finally) ε-Certified Removal

Theorem

Let A be the learning algorithm that minimizes Lb(w;D) and M be the Newton update
removal mechanism. Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is

γ-Lipschitz, and ∥xi∥2 ≤ 1 for all xi. If b ∼ p(b) ∝ e−
ε
ε′ ∥b∥2 (where ε′ := 4γC2

λ2(n−1)
) and

∥b1 − b2∥2 ≤ ε′ then M is ε-CR for A.

ε: a user-specified unlearning parameter.

b ∼ p(b) ∝ e−
ε
ε′ ∥b∥2 and ∥b1 − b2∥2 ≤ ε′: e.g., drawing from a distribution with a

constraint (realistic?)
▶ A high-probable CR definition in the paper can relax the constraint on the distribution.

15 / 22



(Finally) Certified Removal: A Proof Sketch
Recall the certified removal (CR) definition:

P {M(A(D),D, x) ∈ T }
P {A(D′) ∈ T }

=
P{w− ∈ T }
P{w∗ ∈ T }

?
≤ eε

Here, the probability is taken over the randomness of the algorithm.

The randomness is from the loss perturbation by b. Suppose b1, b2 ∼ p(b) ∝ e−
ε
ε′ ∥b∥2 .

Then,

p(b1)

p(b2)
= exp

{
− ε

ε′
(∥b1∥2 − ∥b2∥2)

}
= exp

{ ε

ε′
(∥b2∥2 − ∥b1∥2)

}
≤ exp

{ ε

ε′
(∥b2 − b1∥2)

}
= eε

From Theorem 2 of the paper,

p(b1)

p(b2)
≤ eε =⇒ P{w− ∈ T }

P{w∗ ∈ T }
≤ eε.

16 / 22



(Finally) Certified Removal: A Proof Sketch
Recall the certified removal (CR) definition:

P {M(A(D),D, x) ∈ T }
P {A(D′) ∈ T }

=
P{w− ∈ T }
P{w∗ ∈ T }

?
≤ eε

Here, the probability is taken over the randomness of the algorithm.

The randomness is from the loss perturbation by b. Suppose b1, b2 ∼ p(b) ∝ e−
ε
ε′ ∥b∥2 .

Then,

p(b1)

p(b2)
= exp

{
− ε

ε′
(∥b1∥2 − ∥b2∥2)

}
= exp

{ ε

ε′
(∥b2∥2 − ∥b1∥2)

}
≤ exp

{ ε

ε′
(∥b2 − b1∥2)

}
= eε

From Theorem 2 of the paper,

p(b1)

p(b2)
≤ eε =⇒ P{w− ∈ T }

P{w∗ ∈ T }
≤ eε.

16 / 22



(Finally) Certified Removal: A Proof Sketch
Recall the certified removal (CR) definition:

P {M(A(D),D, x) ∈ T }
P {A(D′) ∈ T }

=
P{w− ∈ T }
P{w∗ ∈ T }

?
≤ eε

Here, the probability is taken over the randomness of the algorithm.

The randomness is from the loss perturbation by b. Suppose b1, b2 ∼ p(b) ∝ e−
ε
ε′ ∥b∥2 .

Then,

p(b1)

p(b2)
= exp

{
− ε

ε′
(∥b1∥2 − ∥b2∥2)

}
= exp

{ ε

ε′
(∥b2∥2 − ∥b1∥2)

}
≤ exp

{ ε

ε′
(∥b2 − b1∥2)

}
= eε

From Theorem 2 of the paper,

p(b1)

p(b2)
≤ eε =⇒ P{w− ∈ T }

P{w∗ ∈ T }
≤ eε.

16 / 22



(ε, δ)-Certified Removal

Theorem

Let A be the learning algorithm that minimizes Lb(w;D) and M be the Newton update
removal mechanism. Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is

γ-Lipschitz, and ∥xi∥2 ≤ 1 for all xi. If b ∼ N (0, c ε
′

ε ) with c > 0 (where ε′ := 4γC2

λ2(n−1)
), then

M is (ε, δ)-CR for A with δ = 1.5e−c2/2.

More complex but more practical

17 / 22



Results: Fast

Removal on the last linear layer

Faster than retraining

18 / 22



Results: Easy v.s. Hard

Recall the Newton update removal:

w− = M(w∗,D, (xn, yn)) := w∗ +H−1
w∗∆

Top 10: 10 examples with higher ∥H−1
w∗∆∥2

Bottom 10: 10 examples with lower ∥H−1
w∗∆∥2

Unusual samples are not easy to undo!
▶ Removing outliers is harder.
▶ The model tends to memorize unusual samples.

19 / 22



Results: CR v.s. DP

Why not simply use DP?
▶ CR Linear (from minimization of perturbed loss) is more accurate than DP Linear; looks

better than DP. Why?

Why not use non-DP extractor?
20 / 22



Conclusion

How to evaluate the success of unlearning?

Is the linear assumption critical?
▶ We can remove data from the last linear layer of a deep network, which seems to be enough?

We need to retrain a linear model with noise; not useful?

21 / 22



Reference I

Y. Cao and J. Yang. Towards making systems forget with machine unlearning. In 2015 IEEE
symposium on security and privacy, pages 463–480. IEEE, 2015.

P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pages 1885–1894. PMLR, 2017.

22 / 22


	References

