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Motivation

@ Heuristic adversarial learning often fails against powerful adversaries.

CIFAR10
Simple|Wide  Simple| Wide Simple| Wide
Natural 92.7% [952%  87.4% [90.3% 79.4% [87.3%
FGSM 27.5% |32.7%  90.9% (95.1% 51.7% (56.1%
PGD 08% [35%  0.0% |0.0% 43.7% |45.8%

(a) Standard training (b) FGSM training (c) PGD training

» FGSM training and FGSM attacks: 90.9% accuracy :)
» FGSM training and PGD attacks: 0.0% accuracy :(
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(a) Standard training (b) FGSM training (c) PGD training

» FGSM training and FGSM attacks: 90.9% accuracy :)
» FGSM training and PGD attacks: 0.0% accuracy :(

@ Can we learn a classifier robust to any small perturbations?
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Certified Adversarial Learning
e Convex outer approximation [Kolter and Wong, 2017]

Input z and Final Iayer 2 and Convex outer bound
allowable perturbations  peep network ~ adversarial polytope

v Certified!

Hgﬁwx Uf,x+0,y) <Ule f,z,y)

X Not scalable :(
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Certified Adversarial Learning

e Convex outer approximation [Kolter and Wong, 2017]

|LH - 6’\;;:1 = ‘1

Input z and Final layer Z; and Convex outer bound
allowable perturbations Deep network adversarial polytope

v Certified!

Hgﬁla)i é(f,],‘ + 5’ y) < U(&‘, faxay)

X Not scalable :(
@ Randomized smoothing: a post-hoc method

Certified Adversarial Robusti via Randomized Smoothing

Jeremy Cohen! Elan Rosenfeld ! J. Zico Kolter |2

v (Probably) Certified!
v Scalable!
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A Goodness Definition: Robustness

e flz+6) = f(z)

o f: X — Y: aclassifier
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A Goodness Definition: Robustness

e flz+6) = f(z)

o f: X — Y: aclassifier
@ The constraint on the perturbation ¢ can be more general.

@ It does not matter whether f(x) is correct.
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A Certified Method: Randomized Smoothing

g(z) = argme%idl){f(:c +6)=c} where &~ N(0,6%)

@ g: X — Y: a smoothed classifier

@ o is related to the maximum perturbation €.
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Robustness Guarantee

Binary Classification
Theorem
Suppose that pa € (0.5, 1] satisfies

P{f(z+¢c)=ca} >pa where e~ N(0,0%I).

Then, we have g(x + §) = cy if
H(5||2 < O'(I)fl(m).

@ c4: the most probable class when f classifies x + ¢
@ p4: the chance that f classifies z 4 € by ca

@ pa: the lower bound of py

e ®~!: the inverse of the standard Gaussian CDF
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Robustness Guarantee

Binary Classification
Theorem
Suppose that pa € (0.5, 1] satisfies

P{f(z+¢c)=ca} >pa where e~ N(0,0%I).

Then, we have g(x + §) = cy if
H(SHQ < O'(I)fl(m).

ca: the most probable class when f classifies x + ¢
pa: the chance that f classifies x + ¢ by ca

pa: the lower bound of py

®~!: the inverse of the standard Gaussian CDF

Here, we assume that we can compute PA-

Due to the Gaussian, we can compute the maximum perturbation to be robust!

6/21



Robustness Guarantee: A Proof Sketch (1/3)
Binary Classification

o Fix a perturbation §.
@ From the definition of g, we have

g(x +0) =argmaxP {f(x +e+6) =c} where &~ N(0,0%])
=argmaxP {f(z+&)=c} where & ~N(5,0°])
" (1)

iCA
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Robustness Guarantee: A Proof Sketch (1/3)
Binary Classification

o Fix a perturbation §.
@ From the definition of g, we have

g(x +0) =argmaxP {f(x +e+6) =c} where &~ N(0,0%])
=argmaxP {f(z+&)=c} where & ~N(5,0°])

iCA

e We wish to prove (1). How?
» f can be any classifier, which is not easy to analyze.
» Consider a surrogate classifier that bounds the probability and is easier to analyze, e.g.,

1
P +&) = > i P{f(x+¢€)= > = +4) =ca.
{f(x ) =ca}> f/;P{f(wasl)n:cA}zpi {f' (= ) =ca} 5 g(x+6) =ca
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Robustness Guarantee: A Proof Sketch (2/3)

Binary Classification

o Interestingly, f* is linear (due to the Neyman-Perason lemma), where

*—ar min P{fl(z+)=c¢
J =g et gy, D @) = ea)

8/21



Robustness Guarantee: A Proof Sketch (3/3)

Binary Classification

@ We have a closed-form solution of f*:

) {cA i 67 (a' — ) < a|8]|2® " (pa)

cg otherwise

@ This implies
P {f*(x +&) = CA} = <<I>_1(pA) _ H(5H2>

g

@ The above probability should be larger than % ie.,

o (27 - 102

- g

1
> >5 = 16]]2 < 0@ (pa).
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Robustness Guarantee

Multi-class Classification

Theorem
Suppose that pa,pp € [0, 1] satisfies

P{f(x+¢)=ca} Z@ZZ@Z@@(PU(JC—{—&) =q.
Then, we have g(z + ) = ca for all ||0]|2 < R, where
Ri=3 (27 (pa) ~ 27" (PB)
@ c4: the most probable label (with probability at least p4)

o cp = argmax.z., P {f(x + ) = c}: the second-most probable label (with probability at
most pg)
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Prediction

function PREDICT(f, o, x, 1, @)
counts < SAMPLEUNDERNOISE(f, z, n, o)
¢a,Cp + top two indices in counts
na,npg < counts[éa], counts[ég]
if BINOMPVALUE(n 4, na +npg,0.5) < areturn é4
else return ABSTAIN

@ Recall the randomized smoothing method:

g(x) = argmeaﬁdP {f(x+06)=c} where 6~ N(0,0%])

@ Draw n noisy perturbations d1,...,0,.
@ Empirically compute the most probable and the second most probably labels, i.e., ¢4 and ¢g.
© If ¢4 is drawn from the binomial distribution with p = 0.5, return ¢4.
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Certification in Evaluation

# certify the robustness of g around x

function CERTIFY(f, 0, x, ng, 1, @)
counts0 < SAMPLEUNDERNOISE(f, z, ng, o)
¢4 + top index in counts0
counts < SAMPLEUNDERNOISE(f, z,n,0)
pa < LOWERCONFBOUND(counts[éa], n, 1 — a)
if pa > 1 return prediction é4 and radius 0 = (p4)
else return ABSTAIN

@ Compute p4 via the binomial tail bound.
@ Compute the robust radius, i.e., c® !(p4).
Q If (a desired radius) < 0® !(py4), then “certified”.
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Results: ImageNet
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o Classifier: ResNet-50
e undefended: a classifier with heuristic adversarial training (using ¢o adversarial attacks)
@ perturbation: [|d]]2 < (radius)
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Results: Comparison

1.0

—— smoothing, large network
—— smoothing, small network
---= (Wong et al, 2018) 1
—— (Wong et al, 2018) 2
-------- (Wong et al, 2018) 3

certified accuracy

“0.0 05 1.0 15 2.0 25 3.0
radius

e (maybe) on MNIST
@ Baseline: deterministic robustness guarantee

@ randomized smoothing: high-probability guarantee
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Limitation of Randomized Smoothing

@ Randomized smoothing requires retraining (e.g., Gaussian data augmentation).

1.0
—— Cohen et al.

—— Stab+MSE-resnet18
Stab+MSE-resnet34

\ --- MSE
06 m ——- No denoiser

o
=3

Certified Accuracy
o
IS

°
N

£, radius

» Cohen et al.: Randomized smoothing with retraining
» No denoiser: Randomized smoothing without retraining

@ How to avoid retraining?
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Denoise Gaussian Noise

Denoised Smoothing:
A Provable Defense for Pretrained Classifiers

Hadi Salman Mingjie Sun Greg Yang
hasalman@nmicrosoft.com mingjies@cs.cmu.edu gragyang@microsoft.com
Microsoft Research CMU Microsoft Research

Ashish Kapoor J. Zico Kolter
akapoor@nicrosoft.com zkolter@cs.cmu.edu
Microsoft Research CMU

@ A classifier randomized smoothing needs to be robust to Gaussian noise for better
certified robustness.

@ How about denoise Gaussian noise and then use the randomized smoothing?
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Denoised Smoothing
Randomized Smoothing:
g(z) = arg rglea)?(]P {f(x+6)=c} where &~ N(0,0%])
@ Applicable for any classifier f
Denoised Smoothing:
g(r) == arg rglea;{]P {f(D(z+6)) =c} where &~ N(0,0%])

e D:X — X: adenoiser

@ Consider a new classifier f o D and then enjoy randomized smoothing.
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How to Train a Denoiser?

MSE objective:
Lvse = E ID(x +6) — |3

Y
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How to Train a Denoiser?

MSE objective:
Lyse = E _|[D(z+6) — |3
z,y,0

X Does not consider the accuracy of a classifier.

Stability objective:

Lstap = B _£(f,D(x+9),f(x)) where &~ N(0,0°1)
x?y’
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Results

—— Cohen et al. —— Cohen etal. —— Cohen etal.
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(a) ResNet-18 (b) ResNet-34 (c) ResNet-50

@ The denoised smoothing without retraining is quite similar to the randomized smoothing

with retraining.
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Conclusion

@ Randomized smoothing provides a simple defense mechanism.

@ Desnoised smoothing does not require to retrain a classifier (but still requires training the

denoiser).

@ Recently, the denoised smoothing was improved via denoising diffusion probabilistic

Models [Carlini et al., 2023].

Certified Accuracy at € (%)

Method Off-the-shelf Extra data 0.5 1.0 1.5 2.0 3.0
PixelDP (Lecuyer et al., 2019) O X (33.0)16.0 - -

RS (Cohen et al., 2019) o X (67.0)49,0 (700370 (570290 (440199 (40120
SmoothAdv (Salman et al., 2019) o X (65.0)56,0 (3400430 (540037 (400)27 (400200
Consistency (Jeong & Shin, 2020) o X (55.0)50,0 (35:0044,0 (5500340 (410240 (10170
MACER (Zhai et al., 2020) o X (68.0)57,0 (6400430 (6400310 (480)250 (48.0)14,0
Boosting (Horvith et al., 2022a) o X (65.6)570 (57:0)44,6 (57-00384 (446)28,6 (386212
DRT (Yang et al., 2021) o X (522)46.8 (55-2)44 4 (498)398 (498)304 (498)234
SmoothMix (Jeong et al., 2021) o X (55.0)50,0 (35:0043,0 (55.0)38,0 (400)26,0 (40.0)20,0
ACES (Horvith et al., 2022b) © X (63.8)540 (572422 (55-6)356 (398)25¢6 (44.0)19.8
Denoised (Salman et al., 2020) © X (60.0033 0 (38.0)140 (38.0)6 0 - -
Lee (Lee, 2021) ° X 41.0 24.0 11.0 - -
Ours ) v (828)71.1 (71543 (77:1)38.1 (60.0)29,5 (60.0)13 1
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