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Conformal Prediction

...we are hedging the prediction — we are adding to it a statement about how strongly we believe
it. – Vovk et al., 2005
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Motivation

Conventional prediction:

Conformal prediction:
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Motivation

Conventional prediction:
f : X 7→ Y

Conformal prediction:
C : X 7→ 2Y

Conventional prediction is a “point” prediction.

Conformal prediction is a set-valued prediction.

The set contains “likely-correct” alternative options.
▶ The set size measures “uncertainty”!

Why not confidence prediction? User-friendly?
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Motivation: Decision Making
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Why “Conformal”?
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Conformal (Prediction) Sets

Definition (conformal set)

C(x) := {y ∈ Y | f(x, y) ≥ q}

We are using more recent notations based on inductive conformal prediction.
▶ The notations are from Lei et al. [2018], Vovk et al. [2005], Tibshirani et al. [2019], and their

combination.
▶ Note that inductive conformal prediction [Papadopoulos et al., 2002] is an efficient variation

of full conformal prediction [Vovk et al., 2005].

f : X × Y → R: a conformity scoring function
▶ Measures how well (x, y) conforms to a trained model f (via a proper training set)
▶ f(x, y) is a likelihood of x for being y

q: A parameter to be chosen by an algorithm.

8 / 35



Conformal (Prediction) Sets

Definition (conformal set)

C(x) := {y ∈ Y | f(x, y) ≥ q}

We are using more recent notations based on inductive conformal prediction.
▶ The notations are from Lei et al. [2018], Vovk et al. [2005], Tibshirani et al. [2019], and their

combination.
▶ Note that inductive conformal prediction [Papadopoulos et al., 2002] is an efficient variation

of full conformal prediction [Vovk et al., 2005].

f : X × Y → R: a conformity scoring function
▶ Measures how well (x, y) conforms to a trained model f (via a proper training set)
▶ f(x, y) is a likelihood of x for being y

q: A parameter to be chosen by an algorithm.

8 / 35



Conformal (Prediction) Sets

Definition (conformal set)

C(x) := {y ∈ Y | f(x, y) ≥ q}

We are using more recent notations based on inductive conformal prediction.
▶ The notations are from Lei et al. [2018], Vovk et al. [2005], Tibshirani et al. [2019], and their

combination.
▶ Note that inductive conformal prediction [Papadopoulos et al., 2002] is an efficient variation

of full conformal prediction [Vovk et al., 2005].

f : X × Y → R: a conformity scoring function
▶ Measures how well (x, y) conforms to a trained model f (via a proper training set)
▶ f(x, y) is a likelihood of x for being y

q: A parameter to be chosen by an algorithm.

8 / 35



Conformal (Prediction) Sets

Definition (conformal set)

C(x) := {y ∈ Y | f(x, y) ≥ q}

We are using more recent notations based on inductive conformal prediction.
▶ The notations are from Lei et al. [2018], Vovk et al. [2005], Tibshirani et al. [2019], and their

combination.
▶ Note that inductive conformal prediction [Papadopoulos et al., 2002] is an efficient variation

of full conformal prediction [Vovk et al., 2005].

f : X × Y → R: a conformity scoring function
▶ Measures how well (x, y) conforms to a trained model f (via a proper training set)
▶ f(x, y) is a likelihood of x for being y

q: A parameter to be chosen by an algorithm.

8 / 35



Conformity Scoring Functions I
Conformity scoring functions can be (almost) any model!

Example (classification)

f(x, y) := fcls(x, y)

fcls: a classification model, e.g., resnet
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Conformity Scoring Functions II
Conformity scoring functions can be (almost) any model!

Example (standard regression in 1-dimension)

f(x, y) := −|µ(x)− y|

µ: a regressor
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Conformity Scoring Functions III
Conformity scoring functions can be (almost) any model!

Example (probabilistic regression)

f(x, y) := N (y;µ(x), σ2
1:d(x))

i.e., a Gaussian model with a diagonal covariance matrix [Nix and Weigend, 1994])

d: The dimension of Y.

Implementation: µ(x) = fmu(x) and lnσ2 = fvar(x)
▶ fmu(x): a neural network
▶ fvar(x): a neural network
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Back to Conformal Sets

Definition (conformal sets)

C(x) := {y ∈ Y | f(x, y) ≥ q}

A conformity scoring function f is given.

f is a target to measure uncertainty.

How to choose q?
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Assumption: Exchangeability

Assumption

A sequence of random variables X1, X2, . . . is exchangeable if for any permutation σ, the
following holds:

P {X1 = x1, X2 = x2, . . . } = P
{
Xσ(1) = x1, Xσ(2) = x2, . . .

}
.

The i.i.d. assumption implies the exchangeability assumption (why?).

13 / 35



Assumption: Exchangeability

Assumption

A sequence of random variables X1, X2, . . . is exchangeable if for any permutation σ, the
following holds:

P {X1 = x1, X2 = x2, . . . } = P
{
Xσ(1) = x1, Xσ(2) = x2, . . .

}
.

The i.i.d. assumption implies the exchangeability assumption (why?).

13 / 35



A Goodness Metric: Coverage Guarantee

Definition (coverage guarantee)

P

{
Yn+1 ∈ Ĉ(Xn+1)

}
≥ 1− α

(Xi, Yi) ∈ X × Y for i = 1, . . . , n: a training set

The probability is taken over (Xi, Yi) for i = 1, . . . , n+ 1.

(Xi, Yi) for i = 1, . . . , n+ 1: the exchangeable samples (thus the i.i.d. samples)

Ĉ: A conformal set constructed by the training set

1− α ∈ (0, 1): A desired coverage rate

14 / 35



A Goodness Metric: Coverage Guarantee

Definition (coverage guarantee)

P

{
Yn+1 ∈ Ĉ(Xn+1)
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Quantile
Quantile of a Distribution

The level β quantile of a distribution F :

Definition (quantile)

Quantile(β;F ) := inf{z | P{Z ≤ z} ≥ β}

F : a distribution over the augmented real line, R ∪ {∞}
Z ∼ F

▶ allows multiple instances of the same element
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Quantile
Quantile of an Empirical Distribution

The level β quatile of an empirical distribution of the values v1:n:

Definition (quantile)

Quantile(β; v1:n) := Quantile

(
β;

1

n

n∑
i=1

δvi

)

v1:n := {v1, . . . , vn}: an unordered multiset

δa: a δ-distribution (i.e., a point mass at a)

16 / 35



Quantile Lemma

Lemma (Tibshirani et al. [2019])

If V1, . . . , Vn+1 are exchangeable random variables, then for any β ∈ (0, 1), we have

P

{
Vn+1 ≤ Quantile(β;V1:n ∪ {∞})

}
≥ β.

The key lemma for conformal prediction

Intuition?

We will see a proof after motivating on this quantile lemma.
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Quantile Algorithm

Definition (quantile algorithm)

Given (X1, Y1), . . . , (Xn, Yn),

q̂1−α := Quantile(1− α, V1:n ∪ {∞}),

where Vi := −f(Xi, Yi).

The implementation is as simple as finding the k-th smallest value.
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Coverage Guarantee of the Quantile Algorithm

Theorem (Vovk et al. [2005], Lei et al. [2018])

Assume that (Xi, Yi) for i ∈ {1, . . . , n+ 1} are exchangeable. For any scoring function f and
any α ∈ (0, 1), denote the conformal set by

Ĉ(x) :=
{
y ∈ Y

∣∣∣ − f(x, y) ≤ q̂1−α

}
.

Then, we have

P

{
Yn+1 ∈ Ĉ(Xn+1)

}
≥ 1− α,

where the probability is taken over (Xi, Yi).

This is a marginal coverage guarantee.
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Coverage Guarantee of the Quantile Algorithm: Intuition

A conformal set contains the most “true scores”.
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Coverage Guarantee of the Quantile Algorithm: A Proof Sketch
Due to the symmetric construction of scores (using the same scoring function f), for any
permutation π we have

(Z1, . . . , Zn+1)
d
= (Zπ(1), . . . , Zπ(n+1)) =⇒ (V1, . . . , Vn+1)

d
= (Vπ(1), . . . , Vπ(n+1))

where Zi := (Xi, Yi).

As (Z1, . . . , Zn+1) are exchangeable, so are (V1, . . . , Vn+1).

Use the quantile lemma by letting β = 1− α, i.e.,

P

{
Vn+1 ≤ Quantile(1− α;V1:n ∪ {∞})

}
≥ 1− α.

Observe that

Yn+1 ∈ Ĉ(Xn+1) ⇐⇒ Vn+1 ≤ Quantile(1− α, V1:n ∪ {∞}).

Thus, we have

P

{
Yn+1 ∈ Ĉ(Xn+1)

}
≥ 1− α.
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Quantile Lemma (Again)

Lemma (Tibshirani et al. [2019])

If V1, . . . , Vn+1 are exchangeable random variables, then for any β ∈ (0, 1), we have

P

{
Vn+1 ≤ Quantile(β;V1:n ∪ {∞})

}
≥ β.

The key lemma for conformal prediction
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Quantile Lemma: A Proof Sketch I

One fact about quantiles of a discrete distribution F with support points a1, . . . , ak ∈ R:
▶ Denote q := Quantile(β;F )
▶ Reassign the points ai strictly larger than q to arbitrary values also strictly larger than q,

yielding a new distribution F̃
▶ Still we have Quantile(β;F ) = Quantile(β; F̃ )

Thus, we have

Vn+1 > Quantile(β;V1:n ∪ {∞}) ⇐⇒ Vn+1 > Quantile(β;V1:n+1).

This implies

P

{
Vn+1 ≤ Quantile(β;V1:n ∪ {∞})

}
= P

{
Vn+1 ≤ Quantile(β;V1:n+1)

}
≥ ⌈β(n+ 1)⌉

n+ 1
(1)

≥ β(n+ 1)

n+ 1
= β.
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Quantile Lemma: A Proof Sketch II

Why (1)?
▶ By exchangeability, we have for any integer k ∈ {1, . . . , n+ 1},

P

{
Vn+1 ≤ V[k]

}
≥ k

n+ 1
,

where [k] is the k-th smallest value of V1, . . . , Vn+1.
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Quantile Lemma: A Proof Sketch III

▶ Suppose that there is no tie (see Kuchibhotla [2020] for a general proof). We have

P

{
Vn+1 ≤ V[k]

}
≥ P

{
k∨

i=1

Vn+1 = V[i]

}

=

k∑
i=1

P

{
Vn+1 = V[i]

}
=

k∑
i=1

n!

(n+ 1)!
(2)

=
k

n+ 1
.
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Quantile Lemma: A Proof Sketch IV

▶ Why (2)?

⋆ For each permutation π, we have

P{V1 ≤ · · · ≤ Vn+1} = P{(V1, . . . , Vn+1) ∈ A}
= P{(Vπ(1), . . . , Vπ(n+1)) ∈ A} (3)

= P{Vπ(1) ≤ · · · ≤ Vπ(n+1)}

where A := {(x1, . . . , xn+1) | x1 ≤ · · · ≤ xn+1} and (3) holds due to the exchangeability
assumption.

⋆ This means that “exchangeability” implies “uniform probability over orders”
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Power of Conformal Prediction

The coverage guarantee is drawn with minimal assumptions.

It does not make assumptions on a distribution except for the exchangeability.

The guarantee holds for any conformity scoring function.
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Size of Conformal Sets

Application-dependent issues
▶ classification: set size
▶ 1-D regression: interval length
▶ multi-dimentional regression: e.g., volume

Larger set: uncertain (e.g., the entire set)

Smaller set: more certain (e.g., a singleton)

We will see some analysis in PAC conformal prediction.
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Interesting Variation: Time-series Forecasting
Conformal Time-series Forecasting [Stankeviciute et al., 2021]

Conformal prediction for independent time-series data
▶ e.g., temperature change for each year
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Conformal Time-series Forecasting I
Problem

Setup:

yt:t′ := (yt, yt+1, . . . , yt′) ∈ Rd × . . .Rd: a time-series of d-dimensional observation
▶ Let d = 1

H: a prediction horizon

ŷt′+1:t′+H : predicted future observations (e.g., the output of a RNN)

Ct+h(y1:t): a prediction interval at time t+ h
▶ Ct+h(y1:t) := [ŷLt+h, ŷ

U
t+h]
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Conformal Time-series Forecasting II
Problem

Desired coverage guarantee:

P

{
∀h ∈ {1, . . . ,H}, yt+h ∈ Ct+h(y1:t)

}
≥ 1− α

The probability is taken over y1:t+H .

1− α: a desired coverage rate

Goal: Find Ct+h for all h ∈ {1, . . . ,H}.
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Conformal Time-series Forecasting
Approach

D := {(y(i)1:T , y
(i)
T+1:T+H)}mi=1: a calibration set

Observe that

P

{
∃h ∈ {1, . . . ,H}, yt+h /∈ Ct+h(y1:t)

}
≤

∑
h∈{1,...,H}

P{yt+h /∈ Ct+h(y1:t)} (4)

≤ α (5)

▶ (4) holds due to the union bound.
▶ (5) holds if P{yt+h /∈ Ct+h(y1:t)} ≤ α

H

Due to the standard conformal prediction, we can find Ct+h such that

P{yt+h /∈ Ct+h(y1:t)} ≤ α

H
.
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Conclusion

Conformal prediction is a powerful tool to construct a prediction set (for measuring
uncertainty) with correctness guarantees.

Conformal prediction has many applications due to its “distribution-free” and
“scoring-function-free” nature.

The original conformal prediction framework can be extended to “conditional” cases
(e.g., PAC conformal prediction).
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