Trustworthy Machine Learning Adaptive Conformal Prediction

Sangdon Park

POSTECH

Motivation: Distribution Shift

- The main assumption of conformal prediction: exchangeability (or i.i.d.)
- In practice, this is fragile due to distribution shifts.
- Type of distribution shifts
	- \blacktriangleright Covariate shift
	- \blacktriangleright Label shift
	- ▶ ...
	- \blacktriangleright Adversarial shift

Covariate Shift

- \bullet Setup: follows domain adaptation, *i.e.*,
	- \blacktriangleright There is only one shift
	- \blacktriangleright $p(x, y)$: a source distribution
	- \blacktriangleright $q(x, y)$: a target distribution
	- ► $S \sim p^{m}(x, y)$: i.i.d. label examples from source
	- ▶ $T \sim q^n(x)$: i.i.d. unlabeled examples from target

Covariate Shift

 \bullet Setup: follows domain adaptation, *i.e.*,

- \blacktriangleright There is only one shift
- \blacktriangleright $p(x, y)$: a source distribution
- \blacktriangleright $q(x, y)$: a target distribution
- ► $S \sim p^{m}(x, y)$: i.i.d. label examples from source
- ▶ $T \sim q^n(x)$: i.i.d. unlabeled examples from target
- **•** Assumption:

 $p(y|x) = q(y|x)$ but possibly $p(x) \neq q(x)$

Covariate Shift

 \bullet Setup: follows domain adaptation, *i.e.*,

- \blacktriangleright There is only one shift
- \blacktriangleright $p(x, y)$: a source distribution
- \blacktriangleright $q(x, y)$: a target distribution
- ► $S \sim p^{m}(x, y)$: i.i.d. label examples from source
- ▶ $T \sim q^n(x)$: i.i.d. unlabeled examples from target

• Assumption:

 $p(y|x) = q(y|x)$ but possibly $p(x) \neq q(x)$

- Conformal prediction under covariate shift
	- \blacktriangleright [Tibshirani et al. \[2019\]](#page-39-0): provides the coverage guarantee
	- ▶ [Park et al. \[2022\]](#page-39-1): provides the PAC coverage guarantee

Label Shift

- \bullet Setup: follows domain adaptation, *i.e.*,
	- \blacktriangleright There is only one shift
	- \blacktriangleright $p(x, y)$: a source distribution
	- \blacktriangleright $q(x, y)$: a target distribution
	- ► $S \sim p^{m}(x, y)$: i.i.d. label examples from source
	- ▶ $T \sim q^n(x)$: i.i.d. unlabeled examples from target

Label Shift

 \bullet Setup: follows domain adaptation, *i.e.*,

- \blacktriangleright There is only one shift
- \blacktriangleright $p(x, y)$: a source distribution
- \blacktriangleright $q(x, y)$: a target distribution
- ► $S \sim p^{m}(x, y)$: i.i.d. label examples from source
- ▶ $T \sim q^n(x)$: i.i.d. unlabeled examples from target
- **•** Assumption:

 $p(x|y) = q(x|y)$ but possibly $p(y) \neq q(y)$

Label Shift

 \bullet Setup: follows domain adaptation, *i.e.*,

- \blacktriangleright There is only one shift
- \blacktriangleright $p(x, y)$: a source distribution
- \blacktriangleright $q(x, y)$: a target distribution
- ► $S \sim p^{m}(x, y)$: i.i.d. label examples from source
- ▶ $T \sim q^n(x)$: i.i.d. unlabeled examples from target
- Assumption:

 $p(x|y) = q(x|y)$ but possibly $p(y) \neq q(y)$

- Conformal prediction under label shift
	- \triangleright [Podkopaev and Ramdas \[2021\]](#page-39-2): provides the coverage guarantee
	- ▶ [Si et al. \[2023\]](#page-39-3): provides the PAC coverage guarantee

Adversarial Shift

- \bullet Setup: follows an online learning setup, *i.e.*,
	- \blacktriangleright there are multiple shifts over time
	- \blacktriangleright $p_t(x, y)$: a distribution at time t
	- ▶ $(x_t, y_t) \sim p_t(x, y)$: a labeled example sampled at time t

Adversarial Shift

- \bullet Setup: follows an online learning setup, *i.e.*,
	- \blacktriangleright there are multiple shifts over time
	- \blacktriangleright $p_t(x, y)$: a distribution at time t
	- ▶ $(x_t, y_t) \sim p_t(x, y)$: a labeled example sampled at time t
- Assumption: no restriction on shifts

Adversarial Shift

- \bullet Setup: follows an online learning setup, *i.e.*,
	- \blacktriangleright there are multiple shifts over time
	- \blacktriangleright $p_t(x, y)$: a distribution at time t
	- ▶ $(x_t, y_t) \sim p_t(x, y)$: a labeled example sampled at time t
- Assumption: no restriction on shifts
- Conformal prediction under distribution shift
	- \triangleright Gibbs and Candès [2021]: provides the coverage guarantee
	- \triangleright [Bastani et al. \[2022\]](#page-39-5): provides the coverage guarantee for fairness

Can we learn conformal sets under distribution shift?

Setup:

- \bullet X: example space
- \bullet \mathcal{Y} : label space
- $C_t: \mathcal{X} \rightarrow 2^{\mathcal{Y}}$: a conformal set
- A learning game between a learner and nature

$$
\textbf{for } t = 1, \ldots, T \textbf{ do}
$$

Learner receives an example $x_t \in \mathcal{X}$

Learner outputs a *conformal set* $C_t(x_t) \in 2^{\mathcal{Y}}$

Learner receives a true label $y_t \in \mathcal{Y}$

Learner suffers loss $\mathbb{1}(y_t \notin C_t(x_t))$

Learner update a parameter of a conformal set end for

Intuition

A Goodness Metric: "Empirical" Coverage Guarantee

$$
\left|\frac{1}{T}\sum_{t=1}^T \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right) - \alpha\right|
$$

- 1α : a desired coverage rate
- \bullet T: a time horizon
- \hat{C}_t : a conformal set at time t constructed by an algorithm
- It is similar to the regret definition (but not exactly the same).
- We wish to bound this quantity.

A Goodness Metric: "Empirical" Coverage Guarantee

$$
\left|\frac{1}{T}\sum_{t=1}^T \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right) - \alpha\right|
$$

- 1α : a desired coverage rate
- \bullet T: a time horizon
- \hat{C}_t : a conformal set at time t constructed by an algorithm
- It is similar to the regret definition (but not exactly the same).
- We wish to bound this quantity.
- Why not use the PAC guarantee?

A Goodness Metric: "Empirical" Coverage Guarantee

$$
\left|\frac{1}{T}\sum_{t=1}^T \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right) - \alpha\right|
$$

- 1α : a desired coverage rate
- \bullet T: a time horizon
- \hat{C}_t : a conformal set at time t constructed by an algorithm
- It is similar to the regret definition (but not exactly the same).
- We wish to bound this quantity.
- Why not use the PAC guarantee?
	- \triangleright the PAC guarantee is for the batch learning.

- Run the batch conformal prediction (CP) for each time
- But adjust the coverage α for the batch CP to satisfy the empirical coverage guarantee.

Algorithm

Algorithm 1 A standard version of Adaptive Conformal Inference [Gibbs and Candès, 2021]

- 1: $t_1 \in \{1, \ldots, T\}$
- 2: $\alpha_{t_1} \in [0, 1]$
- 3: for $t = t_1, \ldots, T$ do
4: $(\mathcal{D}^{(t)}, \mathcal{D}^{(t)}) \leftarrow F$
- 4: ∪ $(\mathcal{D}_{\sf train}^{(t)}, \mathcal{D}_{\sf cal}^{(t)})$ \leftarrow Randomly split the data $\{(x_i,y_i)\}_{i=1}^{t-1}$ and obtain non-conformity scores
- 5: S_t ← <code>Update</code> a scoring function using $\mathcal{D}_{\textrm{train}}^{(t)}$
- 6: $q_t \leftarrow$ Quantile $(1 \alpha_t, \mathcal{D}_{\mathsf{cal}}^{(t)} \cup \{\infty\})$
- 7: Observe x_t
- 8: Predict $\hat{C}_t(x_t)$
- 9: Observe y_t

10: Update
$$
\alpha_{t+1} \leftarrow \alpha_t + \gamma \left(\alpha - \mathbb{1} \left(y_t \notin \hat{C}_t(x_t) \right) \right)
$$

11: end for

- A conformal set: $\hat{C}_t(x_t) \coloneqq \{y \in \mathcal{Y} \mid S_t(x_t, y) \leq q_t\}$
- \bullet Until t_1 , the algorithm simply collects data.
- The algorithm is not randomized.

Theorem

$$
\left|\frac{1}{T}\sum_{t=1}^{T} \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right) - \alpha\right| \le \frac{\max\{\alpha_1, 1 - \alpha_1\} + \gamma}{T\gamma}
$$

Theorem

For all $T \in \mathbb{N}$, $\alpha \in (0,1)$, and $\gamma > 0$,

$$
\left|\frac{1}{T}\sum_{t=1}^{T} \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right) - \alpha\right| \le \frac{\max\{\alpha_1, 1 - \alpha_1\} + \gamma}{T\gamma}
$$

The coverage decreases by $\mathcal{O}\left(\frac{1}{T}\right)$ $\frac{1}{T}$

Theorem

$$
\left|\frac{1}{T}\sum_{t=1}^{T} \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right) - \alpha\right| \le \frac{\max\{\alpha_1, 1 - \alpha_1\} + \gamma}{T\gamma}
$$

- The coverage decreases by $\mathcal{O}\left(\frac{1}{T}\right)$ $\frac{1}{T}$
- This holds for any sequence $((x_1, y_1), \ldots, (x_T, y_T))!$

Theorem

$$
\left|\frac{1}{T}\sum_{t=1}^{T} \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right) - \alpha\right| \le \frac{\max\{\alpha_1, 1 - \alpha_1\} + \gamma}{T\gamma}
$$

- The coverage decreases by $\mathcal{O}\left(\frac{1}{T}\right)$ $\frac{1}{T}$
- This holds for any sequence $((x_1, y_1), \ldots, (x_T, y_T))!$
	- \blacktriangleright If $\hat{C}_t(x_t)=\mathcal{Y}$, the adversary will never win without randomization.

Theorem

$$
\left|\frac{1}{T}\sum_{t=1}^{T} \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right) - \alpha\right| \le \frac{\max\{\alpha_1, 1 - \alpha_1\} + \gamma}{T\gamma}
$$

- The coverage decreases by $\mathcal{O}\left(\frac{1}{T}\right)$ $\frac{1}{T}$
- This holds for any sequence $((x_1, y_1), \ldots, (x_T, y_T))!$
	- \blacktriangleright If $\hat{C}_t(x_t)=\mathcal{Y}$, the adversary will never win without randomization.
- Suppose $\alpha_1 = 0$, $\gamma = 0.01$, and $\varepsilon = 0.01$. Then, we $T = 10, 100$ observations to make the empirical coverage close to a desired coverage.

A Lemma for the Coverage Bound

Lemma

For all $t \in \mathbb{N}$, we have

$$
\alpha_t \in [-\gamma, 1+\gamma].
$$

• Recall our update rule:

$$
\alpha_{t+1} \leftarrow \alpha_t + \gamma \left(\alpha - \mathbb{1} \left(y_t \notin \hat{C}_t(x_t) \right) \right)
$$

A Lemma for the Coverage Bound

Lemma

For all $t \in \mathbb{N}$, we have

$$
\alpha_t \in [-\gamma, 1+\gamma].
$$

• Recall our update rule:

$$
\alpha_{t+1} \leftarrow \alpha_t + \gamma \left(\alpha - \mathbb{1} \left(y_t \notin \hat{C}_t(x_t) \right) \right)
$$

• Observe that the update cannot be larger than (and equal to) γ , *i.e.*,

$$
\sup_{t} |\alpha_{t+1} - \alpha_t| = \sup_{t} \left| \gamma \left(\alpha - \mathbb{1} \left(y_t \notin \hat{C}_t(x_t) \right) \right) \right| < \gamma
$$

A Lemma for the Coverage Bound

Lemma

For all $t \in \mathbb{N}$, we have

$$
\alpha_t \in [-\gamma, 1+\gamma].
$$

• Recall our update rule:

$$
\alpha_{t+1} \leftarrow \alpha_t + \gamma \left(\alpha - \mathbb{1} \left(y_t \notin \hat{C}_t(x_t) \right) \right)
$$

• Observe that the update cannot be larger than (and equal to) γ , *i.e.*,

$$
\sup_{t} |\alpha_{t+1} - \alpha_t| = \sup_{t} \left| \gamma \left(\alpha - \mathbb{1} \left(y_t \notin \hat{C}_t(x_t) \right) \right) \right| < \gamma
$$

 \blacktriangleright Thus, the claim intuitively makes sense.

A Lemma for the Coverage Bound: A Proof Sketch

- Suppose that there is $\{\alpha_t\}_{t\in\mathbb{N}}$ such that $\inf_t \alpha_t < -\gamma$.
- Claim: $\exists t, \, \alpha_{t-1} < 0$ and $a_t < \alpha_{t-1}$.
	- ▶ Suppose $\forall t, \alpha_{t-1} > 0$ or $a_t > \alpha_{t-1}$.
	- ► If $\forall t, \alpha_{t-1} > 0$, this contradicts to $\inf_t \alpha_t < -\gamma$.
	- ► If $\forall t, a_t > \alpha_{t-1}$, this contradicts to $\inf_t \alpha_t < -\gamma$ (recall that $\alpha_1 \geq 0$)
- Thus, we have the following contradiction:

$$
\alpha_t < 0 \quad \implies \quad q_t \coloneqq \text{Quantile}(1 - \alpha_t, \mathcal{D}_{\text{cal}}^{(t)} \cup \{\infty\}) = \infty
$$
\n
$$
\implies \quad \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right) = 0
$$
\n
$$
\implies \quad \alpha_{t+1} = \alpha_t + \gamma \left(\alpha - \mathbb{1}\left(y_t \notin \hat{C}_t(x_t)\right)\right) = \alpha_t + \gamma \alpha \ge \alpha_t,
$$

which contradict to $\alpha_{t+1} < \alpha_t$.

• Similarly, we can prove that the " $\exists {\alpha_t}_{t \in \mathbb{N}}, \ \sup_t \alpha_t > 1 + \gamma$ " case.

Coverage Bound: A Proof Sketch

- Let $e_t \coloneqq \mathbbm{1}\left(y_t \notin \hat{C}_t(x_t)\right)$
- \bullet Recall the recursive update rule, *i.e.*,

$$
\alpha_{t+1} = \alpha_t + \gamma(\alpha - e_t)
$$

• Due to the recursive update rule,

$$
\alpha_{T+1} = \alpha_1 + \sum_{t=1}^{T} \gamma(\alpha - e_t)
$$

• Due to the previous lemma,

$$
-\gamma \leq \alpha_1 + \sum_{t=1}^T \gamma(\alpha - e_t) \leq 1 + \gamma.
$$

• This implies

$$
\frac{\alpha_1 - (1+\gamma)}{T\gamma} \le \frac{1}{T} \sum_{t=1}^T (e_t - \alpha) \le \frac{\alpha_1 + \gamma}{T\gamma}
$$

Conclusion

- Adaptive Conformal Inference [Gibbs and Candès, 2021] is the first approach to learn a conformal set under distribution shifts.
- This is an example of running a batch algorithm within an online algorithm.
	- \blacktriangleright The time and memory complexity is linear in T.
	- ▶ See a more efficient (and general) approach [\[Bastani et al., 2022\]](#page-39-5)

Reference I

- O. Bastani, V. Gupta, C. Jung, G. Noarov, R. Ramalingam, and A. Roth. Practical adversarial multivalid conformal prediction. Advances in Neural Information Processing Systems, 35: 29362–29373, 2022.
- I. Gibbs and E. Cand`es. Adaptive conformal inference under distribution shift, 2021.
- S. Park, E. Dobriban, I. Lee, and O. Bastani. PAC prediction sets under covariate shift. In International Conference on Learning Representations, 2022. URL <https://openreview.net/forum?id=DhP9L8vIyLc>.
- A. Podkopaev and A. Ramdas. Distribution-free uncertainty quantification for classification under label shift. arXiv preprint arXiv:2103.03323, 2021.
- W. Si, S. Park, I. Lee, E. Dobriban, and O. Bastani. Pac prediction sets under label shift. arXiv preprint arXiv:2310.12964, 2023.
- R. J. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas. Conformal prediction under covariate shift. Advances in Neural Information Processing Systems, 32:2530–2540, 2019.