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D Is Generally Not Separable

Usually we do not know a set of hypotheses H that has the true hypothesis h∗.

What is the architecture of neural networks that perfectly classifies ImageNet?

We mainly search for good hypothesis space F without any assumption on D.
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Why Concentration Inequalities?

Understanding the expected loss is a key in statistical learning

min
f∈F

Eℓ(x, y, f)

Concentration inequalities
▶ A concentration inequality provides a bound around an expected value.

An Example: Mean estimation
▶ Let X1, . . . , Xn be i.i.d. real-valued random variables with mean µ := E[X1]
▶ The empirical mean is defined as

µ̂n :=
1

n

n∑
i=1

Xi

▶ What is the relation between µ and µ̂n?
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Possible Argument 1

Consistency: Due to the law of large numbers,

µ̂n − µ
P→ 0

P→: convergence “in probability”

If we get more data, µ̂n reaches to µ

✗ Asymptotic guarantee: it does not answer on the required number of samples to reach to
the correct answer.
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Possible Argument 2

Asymptotic normality: Assuming Var(X1) = σ2, due to the central limit theorem,

√
n(µ̂n − µ)

D→ N (0, σ2)

D→: convergence “in distribution”

If we get more data, µ̂n reaches to µ, where the variance is decreasing at a rate of 1/n.

✗ Asymptotic guarantee: it does not answer on the required number of samples to reach to
the correct answer.
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Possible Argument 3

Tail bound: we wish to have a statement as follows:

P {|µ̂n − µ| ≥ ε} ≤ SomeFunctionOf(n, ε) = δ.

ε: a desired error level

1− δ: the confidence of the error statement

✓ “SomeFunctionOf(n, ε) = δ” provides the required number of samples to reach a desired
level of error with a desired level of confidence.
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Hoeffding’s Inequality

Theorem

Let X1, . . . , Xn be independent random variables with Xi ∈ [ai, bi] for all i ∈ {1, . . . , n}.
Then, for any ε > 0, the following inequality holds for Sn :=

∑n
i=1Xi:

P {E{Sn} − Sn ≥ ε} ≤ exp

{
−2ε2∑n

i=1(bi − ai)2

}
Why is it called a tail bound?

What’s the effect of n? Suppose ai = 0 and bi = 1,

P

{
E

{
Sn

n

}
− Sn

n
≥ ε′

}
≤ exp

{
−2nε′2

}
X1, . . . , Xn need not to follow the same distribution
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Binomial Distribution Tail Bound
A special version of the Hoeffding’s inequality.

Theorem

Let X1, . . . , Xn be i.i.d. random variables with Xi ∈ {0, 1} and P{Xi = 1} = p ∈ [0, 1] for all
i ∈ {1, . . . , n}. Then, for any ε > 0, the following inequality holds for Sn =

∑n
i=1Xi:

P {p ≤ p̂} ≥ 1− δ,

where F (k;n, p) is the CDF of a binomial distribution with n trials and success probability p
and p̂ := inf {p′ ∈ [0, 1] | F (Sn;n, p

′) ≤ δ}.

p is what we want to estimate and p̂ is the smallest upper bound of p̂ “described” by
observations Sn.

This is from the Clopper-Pearson interval for estimating binomial confidence intervals.

From the Hoeffding’s inequality, P
{
Sn
n − p > ε

}
≤ exp

{
−2nε2

}
A tighter bound than the Hoeffding’s inequality.
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McDiarmid’s Inequality
A generalized version of the Heoffding’s inequality.

Theorem

Let (X1, . . . , Xn) ∈ X n be a list of n ≥ 1 independent random variables and assume that
there exist c1, . . . , cn > 0 such that f : X n → R satisfies the following conditions:∣∣f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x

′
i, . . . , xm)

∣∣ ≤ ci,

for all i ∈ {1, . . . , n} and any x1, . . . , xn, xi ∈ X . Let f(S) denote f(X1, . . . , Xn), then, for
all ε > 0, the following inequality holds:

P {f(S)−E{f(S)} ≥ ε} ≤ exp

{
−2ε2∑n
i=1 c

2
i

}
.

Useful concentration inequality for a more complex function than a mean value under the
“bounded difference”.

The main concentration inequality for a generalization bound.
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Agnostic PAC Learning Algorithm

For the smooth transition from PAC learning, I will introduce agnostic PAC learning.

Later, we will mainly use languages from statistical learning theory.
15 / 47



Agnostic PAC Learning Algorithm

Definition (simplified definition)

An algorithm A is an agnostic PAC-learning algorithm for H if for any ε > 0, δ > 0, h∗ ∈ H,
and D separable by h∗, and for some minimum sample size n′ (which depends on ε, δ,D), the
following holds with any sample size n ≥ n′:

P

{
L(A(S))−min

h∈H
L(h) ≤ ε

}
≥ 1− δ,

where S := ((x1, y1), . . . , (xn, yn)) ∼ Dn.

argminh∈H L(h): the best hypothesis

Vapnik notations on generalization bounds are more widely used.

Please check out the original agnostic PAC learning definition.
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Definitions

Definition (best hypothesis)

h∗ := argmin
h∈H

L(h)

Definition (empirical risk minimizer)

ĥ := argmin
h∈H

L̂(h)

17 / 47



Goal: Find Generalization Bounds
An Interesting Quantity:

L(h)− L̂(h)

Why?
▶ Generally the bound of the following is called a “generalization bound”:

L(ĥ)− L(h∗)

▶ It is bounded as follows (will see later):

P

{
L(ĥ)− L(h∗) ≥ ε

}
≤ P

{
sup
h∈H

∣∣∣L(h)− L̂(h)
∣∣∣ ≥ ε

2

}
▶ We also call a bound of L(h)− L̂(h) a generalization bound — The term “generalization

bound” is used in multiple ways.
▶ I’ll introduce the philosophy on “From Theory to Algorithm”, where L(h)− L̂(h) is more

directly related.

The generalization bound will depend on the complexity of H, which is harder to measure
if H is an infinite set (than the finite case).
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Example: A Learning Bound for a Finite Hypothesis Set I

Setup:

H: a finite set of functions mapping from X to Y
D: any distribution — no assumption!

S: labeled examples

A: any algorithm — no assumption to use!
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Example: A Learning Bound for a Finite Hypothesis Set II
Theorem

Let ℓ(·) ∈ [0, 1]. For any ε > 0, δ > 0, and D, we have

∀h ∈ H, L(h) ≤ L̂(h) +

√
ln |H|+ ln 1

δ

2n

with probability at least 1− δ.

We have logarithmic dependence on |H| and 1 /δ – this bound is not “sensitive” to them.

This is a uniform convergence bound: “∀h” is inside of the probability.

(✗) ∀h ∈ H, P

L(h) ≤ L̂(h) +

√
ln |H|+ ln 1

δ

2n

 ≥ 1− δ

Conservative (=data-independent): even though some h is “bad”, we need the
convergence guarantee.
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Example: A Learning Bound for a Finite Hypothesis Set III

Proof Sketch:

P

{
∃h ∈ H, L(h)− L̂(h) > ε

}
= P

{ ∨
h∈H

L(h)− L̂(h) > ε

}
≤

∑
h∈H

P

{
L(h)− L̂(h) > ε

}
(1)

≤ |H| exp
{
−2nε2

}
(2)

(1): Uniform convergence via the union bound

(2): A “point” convergence via the Hoeffding’s inequality
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From the Previous Learning Bound to an Algorithm
Learning bound:

∀h ∈ H, L(h) ≤ L̂(h) +

√
ln |H|+ ln 1

δ

2n

This bound holds for any h, including A(S) for any A.

If A minimizes the upper bound, A(S) minimizes the expected error.

One such algorithm is the empirical risk minimizer!

Algorithm: Given H and labeled examples S,

min
h∈H

L̂(h)

As the learning bound holds for any h, our algorithm can be more general, e.g., a
regularized ERM.

For this distribution-free setup, the sample complexity is not very meaningful.
22 / 47



ERM is Agnostic-PAC
Example: Under Finite Hypotheses

Why?

L(A(S))− L(h∗) =
{
L(A(S))− L̂(A(S))

}
+

{
L̂(A(S))− L̂(h∗)

}
+
{
L̂(h∗)− L(h∗)

}
≤

{
L(A(S))− L̂(A(S))

}
︸ ︷︷ ︸

uniform convergence

+
{
L̂(h∗)− L(h∗)

}
︸ ︷︷ ︸
concentration inequality

≤

√
ln |H|+ ln 1

δ1

2n
+

√
ln 1

δ2

2n

with probability at least 1− (δ1 + δ2).

23 / 47



Separable D v.s. D
A bound under the separability assumption

L(A(S)) ≤ 1

n

(
log |H|+ log

1

δ

)
A bound without separability

∀h ∈ H, L(h) ≤ L̂(h) +

√
log |H|+ log 1

δ

2n

This is not an apple-and-apple comparison, but let’s try to compare.

A bound that exploits more information is tighter.
▶ A distribution is separable (≈ no noise).

Under the additional information, we can learn faster (i.e., 1
n vs 1√

n
).
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A More General Bound

In general, H is infinite (e.g., a set of neural networks)

The related bound is one of the key results of statistical learning theory (via Vapnik)

Related keywords include
▶ McDiarmid’s Inequality
▶ Rademacher Complexity
▶ VC dimension
▶ A learning bound for SVM

Caution: this “data-independent” bound cannot not explain the learnability of deep
networks!
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Rademacher Complexity

A way to measure the complexity of H (when H is infinite)!

Definition

Let F be a set of real-valued functions f : Z → R (e.g., Z := X × Y). The Rademacher
complexity of F is

Rn(F) := E

{
sup
f∈F

1

n

n∑
i=1

σif(Zi)

}
,

where Z1, . . . , Zn are drawn i.i.d. from a distribution and σ1, . . . , σn are drawn i.i.d. from the
uniform distribution over {−1,+1} (a.k.a. Rademacher variables).

Previously, “concentration inequalities” + “union bound” provides a generalization bound.

This term will be upper-bounded by a term with “VC dimension” later.
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Rademacher Complexity: Interpretation

Rn(F) := E

{
sup
f∈F

1

n

n∑
i=1

σif(Zi)

}

This term considers an “imaginary binary classification” problem with randomly labeled
examples (Zi, σi).

▶ If σi = sign(f(Zi)), f is correct on (Zi, σi).
▶ Solving sup = finding a “best” binary classifier.
▶ Fix n and F → draw Zi and σi → find f .

Rn(F) captures how well the “best classifier” from F can align with random labels.
▶ Large Rn(F) means that there is some f ∈ F , “flexible” enough to learn randomly labeled

examples.
▶ e.g., linear functions v.s. neural networks
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Generalization Bound via Rademacher Complexity

Theorem

Let F := {z 7→ ℓ(z, h) | h ∈ H} and ℓ(·) ∈ [0, 1]. For all h ∈ H,

L(h) ≤ L̂(h) + 2Rn(F) +

√
ln 1

δ

2n

with probability at least 1− δ.

f ∈ F is a composition of h and ℓ.

28 / 47



Proof Sketch: A Bird’s-eye View

1 Define a random variable Gn

▶ Gn := suph∈H L(h)− L̂(h)
▶ A maximum difference between the expected and empirical error (i.e., the worse case = sup).
▶ The bound of this term is a generalization bound.

2 Show that Gn concentrates to E{Gn}.
▶ We will use the McDiarmid’s inequality.

3 Use a technique called “symmetrization” to bound E{Gn} using the Rademacher
complexity.
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Proof Sketch
1. Setup

Define an interesting quantity to us!

Consider the maximum difference between L(h) and L̂(h).

Gn := sup
h∈H

L(h)− L̂(h)

▶ Gn is a random variable that depends on Z1, . . . , Zn.

We will consider the following tail bound:

P {Gn ≥ ε} .

▶ What should we do?
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Proof Sketch I
2. Concentration

Derive a tail bound via a concentration inequality!

Let g be the deterministic function such that Gn = g(Z1, . . . , Zn).

Then, the following holds:∣∣g(Z1, . . . , Zi, . . . , Zn)− g(Z1, . . . , Z
′
i, . . . , Zn)

∣∣ ≤ 1

n
.

Why?
▶ Recall L̂(h) = 1

n

∑n
i=1 ℓ(Zi, h).

▶ Recall ℓ(·) ∈ [0, 1].
▶ We have∣∣∣∣∣ suph∈H

[
L(h)− L̂(h)

]
︸ ︷︷ ︸

g(Z1,...,Zi,...,Zn)

− sup
h∈H

[
L(h)− L̂(h) +

1

n
(ℓ(Zi, h)− ℓ(Z ′

i, h))

]
︸ ︷︷ ︸

g(Z1,...,Z′
i,...,Zn)

∣∣∣∣∣ ≤ 1

n
.
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Proof Sketch II
2. Concentration

Apply the McDiarmid’s inequality:

P
{
Gn ≥ E{Gn}+ ε′

}
≤ exp

(
−2nε′2

)
.

▶ g is a non-trivial function, including sup over h ∈ H; thus, we cannot use the usual
concentration inequality (e.g., the Hoeffding’s inequality).

▶ But, we can still use the McDiarmid’s inequality due to the bounded difference.
▶ We can find our generalization bound if we can bound E{Gn}. But how?
▶ Note that E{Gn} is related to the complexity of F (will see soon).
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Proof Sketch I
3. Symmetrization

Bound E{Gn}!
E{Gn} is not easy to analysis as it depends on L(h), an expectation of an unknown
distribution D.

We will replace this to depend on D only through samples Z1, . . . , Zn.

The key idea of “symmetrization” is to introduce “ghost” samples Z ′
1, . . . , Z

′
n, drawn

i.i.d. from D to rewrite E{Gn}.
▶ Let L̂′(h) := 1

n

∑n
i=1 ℓ(Z

′
i, h).

▶ Rewrite L(h) in terms of the ghost samples, i.e.,

E{Gn} = E

{
sup
h∈H

L(h)− L̂(h)

}
= E

{
sup
h∈H

E{L̂′(h)} − L̂(h)

}
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Proof Sketch II
3. Symmetrization

Simplify and bound this rewritten E{Gn}:

EZ{Gn} = EZ

{
sup
h∈H

EZ′{L̂′(h)} − L̂(h)

}
= EZ

{
sup
h∈H

EZ′

{
L̂′(h)− L̂(h)

}}
≤ EZ

{
EZ′

{
sup
h∈H

L̂′(h)− L̂(h)

}}
= EZ,Z′

{
sup
h∈H

L̂′(h)− L̂(h)

}
= EZ,Z′

{
sup
h∈H

1

n

n∑
i=1

(
ℓ(Z ′

i, h)− ℓ(Zi, h)
)}

where Z := {Z1, . . . , Zn} and Z ′ := {Z ′
1, . . . , Z

′
n}.
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Proof Sketch III
3. Symmetrization

Remove the dependence on the ghost samples.
▶ Introduce the i.i.d. Rademacher variables σ1, . . . , σn, where σi is uniform over {−1, 1}.
▶ Observe that ℓ(Z ′

i, h)− ℓ(Zi, h) is symmetric around 0.
▶ Thus, we have

E{Gn} ≤ E

{
sup
h∈H

1

n

n∑
i=1

(ℓ(Z ′
i, h)− ℓ(Zi, h))

}

= E

{
sup
h∈H

1

n

n∑
i=1

σi (ℓ(Z
′
i, h)− ℓ(Zi, h))

}

≤ E

{
sup
h∈H

1

n

n∑
i=1

σiℓ(Z
′
i, h) + sup

h∈H

1

n

n∑
i=1

(−σi)ℓ(Zi, h)

}

= 2E

{
sup
h∈H

1

n

n∑
i=1

σiℓ(Zi, h)

}
= 2Rn(F)
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Proof Sketch
4. Combine

From concentration, we have

P
{
Gn ≥ E{Gn}+ ε′

}
≤ exp

(
−2nε′2

)
.

From symmetrization, we have

E{Gn} ≤ 2Rn(F).

Our goal is to bound the following tail probability:

P{Gn ≥ ε} ≤ exp
(
−2n (ε−E{Gn})2

)
≤ exp

(
−2n (ε− 2Rn(F))2

)
This shows the claim, as

δ = exp
(
−2n (ε− 2Rn(F))2

)
⇒ ε = 2Rn(F) +

√
ln 1

δ

2n
.
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Connection to the VC Generalization Bound

Rn(F) ≤
√

2VC(H)(lnn+ 1)

n

VC(H): VC dimension of H
Related concepts:

▶ Empirical Rademacher Complexity
▶ A shattering coefficient or growth function
▶ Sauer’s lemma
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Application: Support Vector Machine (SVM)
Setup:

X ∈ Rd: example space

Y := {−1, 1}: binary label space

H: a set of linear functions (without a bias term for simplicity), i.e.,

H := {x 7→ w · x | w ∈ Rd, ∥w∥2 ≤ 1}

or equivalently H := {w ∈ Rd | ∥w∥2 ≤ 1}.
ℓγ : margin loss

ℓγ(v) := min

{
1,max

{
0, 1− v

γ

}}
,

Lγ/L̂γ : the expected/empirical margin loss

Lγ(w) := E {ℓγ(y(w · x))} and L̂γ(w) :=
1

n

n∑
i=1

ℓγ(yi(w · xi))}
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A Generalization Bound of Large-margin Classifiers

Theorem

For all w ∈ H and γ > 0,

L(w) ≤ L̂γ(w) +
2Rn(H)

γ
+

√
ln 1

δ

2n

with probability at least 1− δ.
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Proof Sketch I

Recall

ℓγ(v) := min

{
1,max

{
0, 1− v

γ

}}
, Lγ(w) := E{ℓγ(y(w · x))}, and L̂γ(w) :=

1

n

n∑
i=1

ℓγ(yi(w · xi))}

Our generalization bound via the Rademacher complexity:

L(h) ≤ L̂(h) + 2Rn(F) +

√
ln 1

δ

2n

As ℓ0-1 ≤ ℓγ , for any w ∈ H, we have

L(w) ≤ Lγ(w)
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Proof Sketch II

Thus, we have

L(w) ≤ Lγ(w)

≤ L̂γ(w) + 2Rn(ℓγ ◦ H) +

√
ln 1

δ

2n
(1)

≤ L̂γ(w) +
2Rn(H)

γ
+

√
ln 1

δ

2n
(2)

▶ (1) the generalization bound via Rademacher complexity.
▶ (2) the Talagrand’s lemma (check out our references!)
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From Theory to Algorithm I
From the Large-margin Bound to the SVM Algorithm

Theory:

L(w) ≤ L̂γ(w) +
2Rn(H)

γ
+

√
ln 1

δ

2n

Algorithm:

min
w

1

n

n∑
i=1

ℓhinge(yi(w · xi)) + λ∥w∥2

We will see only a high-level connection (see our references for details).
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From Theory to Algorithm II
From the Large-margin Bound to the SVM Algorithm

Connection?

margin loss ℓγ(v) and hinge loss ℓhinge(v):

ℓγ(v) := min

{
1,max

{
0, 1− v

γ

}}
and ℓhinge(v) := max(0, 1− v)

the upper bound of ℓγ(v):

ℓγ(y(w · x)) = min

{
1,max

{
0, 1− y(w · x)

γ

}}
≤ max

{
0, 1− y(w · x)

γ

}
= max

{
0, 1− y

(
w

γ
· x

)}
= ℓhinge

(
y

(
w

γ
· x

))
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From Theory to Algorithm III
From the Large-margin Bound to the SVM Algorithm

The Rademacher complexity is (roughly) bounded as follows:

Rn(H) ≤ O
(√

1

γ2n

)
An algorithm that minimizes the upper bound (given a hyper-parameter γ):

min
w:∥w∥2≤1

1

n

n∑
i=1

ℓhinge

(
yi

(
w

γ
· xi

))
The change of a variable:

w′ =
w

γ
⇒ ∥w′∥2 ≤

1

γ
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From Theory to Algorithm IV
From the Large-margin Bound to the SVM Algorithm

SVM algorithm:

min
w′:∥w′∥2≤ 1

γ

1

n

n∑
i=1

ℓhinge
(
yi
(
w′ · xi

))
⇐⇒ min

w′∈Rd

1

n

n∑
i=1

ℓhinge
(
yi
(
w′ · xi

))
+ λ∥w′∥2

▶ Why? Check your convex optimization book.

This algorithm minimizes the expected error (as we directly minimize the upper bound of
the expected error).
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SVM is Agnostic-PAC
Bound (again): Given γ

L(w) ≤ L̂γ(w)︸ ︷︷ ︸
minimized

+
2Rn(H)

γ
+

√
ln 1

δ

2n

Why? — the same argument as in ERM.

L(A(S))− L(h∗) =
{
L(ASVM(S))− L̂(ASVM(S))

}
+
{
L̂(ASVM(S))− L̂(h∗)

}
+
{
L̂(h∗)− L(h∗)

}
≤

{
L(ASVM(S))− L̂(ASVM(S))

}
︸ ︷︷ ︸

uniform convergence

+
{
L̂(h∗)− L(h∗)

}
︸ ︷︷ ︸
concentration inequality

≤ 2Rn(H)

γ
+

√
ln 1

δ1

2n
+

√
ln 1

δ2

2n

with probability at least 1− (δ1 + δ2).
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Conclusion

1 We have explored generalization bounds via uniform convergence under various setups.
▶ H: finite
▶ H: infinite – Rademacher complexity
▶ ℓ: 0-1 loss
▶ ℓ: margin loss

2 What are potential limitations of statistical learning theory?
▶ the i.i.d. assumption!

3 In online learning, we will learn a learning algorithm without the i.i.d. assumption.
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