Trustworthy Machine Learning Machine Learning Theory

Sangdon Park

POSTECH

September 24, 2024

What is Learning Theory?

Theory on exploring conditions (or assumptions) when machines can learn from data.

https://www.valamis.com/hub/learning-curve

- Statistical learning theory
- Online learning theory

Historical Figure: Vladimir Vapnik

Service

vannik

Professor of Columbia Fellow of NEC Labs America Verified email at nec-labs com machine learning etatistics computer science

"The Nature of Statistical Learning Theory": summary of his papers up to 1995. VC dimension, SVM, ...

 \approx coulour

MEAD

Historical Figure: Leslie Valiant

Leslie Valiant Unknown affiliation No verified email

- "PAC Learning Theory" in 1984
- **Turing Award winner in 2010**

 \approx FOLLOW

Four Key Ingredients of Learning Theory

The simplified objective of statistical learning theory:

find
$$
f
$$

subj. to $f \in \mathcal{F}$

$$
\mathbb{E}_{(x,y)\sim D} \ell(x,y,f) \leq \varepsilon
$$

or

$$
\min_{f \in \mathcal{F}} \mathop{\mathbb{E}}_{(x,y) \sim D} \ell(x, y, f)
$$

- Ingredient 1: A distribution D (e.g., a distribution over labeled images)
- **Ingredient 2**: Hypothesis space F (e.g., linear functions, a set of resnet)
- Ingredient 3: A loss function ℓ (e.g., 0-1 loss, L1 loss, cross-entropy loss)
- **Ingredient 4**: A learning algorithm $(e.g., GD)$

Main Goal: Finding Conditions for Learnability An Example

Conditions:

- \bullet D: linearly separable dog and cat image distribution
- \bullet F: linear functions encode prior of a data distribution
- ℓ : 0-1 loss for classification represent task
- a learning algorithm: a gradient descent (GD) algorithm

Checking Learnability:

If we prove that the GD algorithm can find the true linear function with a "desired level" of loss, we say $\mathcal F$ is learnable. In this case, we say the GD algorithm is a "good" algorithm.

Contents from

CS229T/STAT231: Statistical Learning Theory (Winter 2016)

Percy Liang

Last updated Wed Apr 20 2016 01:36

These lecture notes will be undated periodically as the course goes on. The Annendix describes the basic notation, definitions, and theorems.

Contents

Foundations of Machine Learning second edition Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar

and various papers. $7/21$

Why PAC Learning?

The key questions in machine learning:

- When can we learn?
- How many samples do we need to have a good model?

The PAC framework provides partial answers to these key questions.

Recall Four Key Ingredients of Learning Theory

- Distribution setup / assumption
	- \triangleright image distribution, language distribution
	- \blacktriangleright samples are independently drawn from the same distribution
- Loss a goodness metric for a desired task
	- \blacktriangleright classification: 0-1 loss
	- ▶ regression: L1 loss
- Hypothesis space prior on the distribution, what we will design!
	- ▶ convolution network: good for image classification
	- ▶ transformers: good for language modeling
- \bullet A learning algorithm what we will design!
	- ▶ convolution network: good for image classification

Assumption

Assumption

We assume that labeled examples are independently drawn from the same (and unknown) distribution D over labeled examples $\mathcal{X} \times \mathcal{Y}$.

- "independent": not sequential data
- "unknown": yes, we don't know the true distribution
- "same": key for success
- A.K.A. the i.i.d. assumption
- The i.i.d. assumption is the standard setup.
- It is easily broken due to distribution shift.
- Online learning relaxes this assumption (under some conditions).

A Goodness Metric: Expected Error for Classification

Definition (expected error)

Given a hypothesis $h \in \mathcal{H}$ and an underlying distribution D, the expected error is defined by

 $L(h) := \mathbb{P} \{ h(x) \neq y \} = \mathbb{E} \{ \mathbb{1} (h(x) \neq y) \},$

where the probability is taken over $(x, y) \sim \mathcal{D}$ and $\mathbb{1}$ is the indicator function.

- Suppose the classification task. But, we can use any task-dependent loss.
- \bullet This expected error of h is sometimes called the risk of h or the generalization error of h.
- The indicator function is defined as follows:

$$
\mathbb{1}(s) \coloneqq \begin{cases} 1 & \text{if } s \text{ is true} \\ 0 & \text{if } s \text{ is false} \end{cases}.
$$

A Goodness Metric: Empirical Error

Definition (empirical error)

Given a hypothesis $h \in \mathcal{H}$ and labeled samples $\mathcal{S} := ((x_1, y_1), \cdots, (x_n, y_n))$, the empirical error is defined by

$$
\hat{L}(h) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} (h(x_i) \neq y_i),
$$

where 1 is the indicator function.

 \bullet This empirical error of h is sometimes called the empirical risk of h.

One More Assumption

Assumption

We assume that a distribution D is separable by some hypothesis $h^* \in \mathcal{H}$, i.e.,

 $L(h^*) = 0.$

- Equivalently, we can consider a true hypothesis h^* from which a label $y = h^*(x)$ is generated; in this case, a distribution is only defined over \mathcal{X} .
- \bullet This assumption is strong but useful in some cases (e.g., PAC conformal prediction).
- This assumption will be removed later (in a more general learning framework).

Approximately Correct

A Goodness Metric for Algorithms

Definition

Given $\varepsilon > 0$, we say that h is approximately correct if

 $L(h) \leq \varepsilon$.

- \bullet ε is a user-defined parameter.
- Recall that L is an expected error.
- \bullet We want to find h that achieves a desired error level ε .
- \bullet h is learned from data; thus, h is also a random variable.

Probably Approximately Correct (PAC)

A Goodness Metric for Algorithms

Definition

Given $\varepsilon > 0$, $\delta > 0$, and $n \in \mathbb{N}$, we say that an algorithm A is probably approximately correct (PAC) if

 $\mathbb{P} \{ L(\mathcal{A}(\mathcal{S})) \leq \varepsilon \} > 1 - \delta,$

where $\mathcal{A}: (\mathcal{X} \times \mathcal{Y})^* \to \mathcal{H}$ and the probability is taken over $\mathcal{S} \coloneqq ((x_1,y_1),\ldots,(x_n,y_n)) \sim \mathcal{D}^n.$

- $S^* \coloneqq \bigcup_{i=0}^{\infty} S^i$
- $\mathcal{S} \sim \mathcal{D}^n$: i.i.d. samples
- \bullet A: a learning algorithm
- PAC is a property of an algorithm

PAC Learning Algorithm

Definition (simplified definition)

An algorithm ${\cal A}$ is a PAC-learning algorithm for ${\cal H}$ if for any $\varepsilon>0,$ $\delta>0,$ $h^*\in{\cal H}$, and ${\cal D}$ separable by h^* , and for some minimum sample size n^* (which depends on $\varepsilon, \delta, \mathcal{D})$, the following holds with any sample size $n \geq n^*$:

 $\mathbb{P} \{ L(\mathcal{A}(\mathcal{S})) \leq \varepsilon \} > 1 - \delta,$

where $\mathcal{S} \coloneqq ((x_1, y_1), \dots, (x_n, y_n)) \sim \mathcal{D}^n$.

- Please check out the original PAC learning definition.
- The algorithm should satisfy the PAC guarantee for any $\mathcal D$ and h^* .
- If D is "complex" (thus h^* is complex), we need more samples.
- If ε (or δ) is small, we need more samples.

Example: A Learning Bound for a Finite Hypothesis Set I

Learning Setup:

- \bullet H: a finite set of functions mapping from X to Y
	- \blacktriangleright e.g., a set of experts
- \mathcal{D} : a distribution is separable by $h^*\in\mathcal{H}$
- \bullet S: labeled examples
- \bullet A: an algorithm that satisfies $\hat{L}(\mathcal{A}(\mathcal{S}))=0$
	- \triangleright *i.e.*, $\mathcal A$ returns a "consistent" hypothesis.
	- \blacktriangleright Here, the algorithm exploits the fact on the separability!

Example: A Learning Bound for a Finite Hypothesis Set II Theorem

For any $\varepsilon > 0$, $\delta > 0$, $h^* \in \mathcal{H}$, and $\mathcal D$ separable by h^* , we have

$$
L(\mathcal{A}(\mathcal{S})) \leq \frac{1}{m} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right)
$$

with probability at least $1 - \delta$.

- \bullet A is a PAC learning algorithm.
- Sample complexity?

$$
m \geq \frac{1}{\varepsilon} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right)
$$

- **► See? As H gets complex and as** ε **and** δ **are smaller, we need more samples.**
- key: A union bound over the events of each hypothesis.

Example: A Learning Bound for a Finite Hypothesis Set III

Lemma (a union bound)

Let A_1, \ldots, A_K be K different events (which might not be independent). Then,

$$
\mathbb{P}\left\{\bigcup_{k=1}^K A_k\right\} \leq \sum_{k=1}^K \mathbb{P}\left\{A_k\right\}.
$$

• Recall the definition of a measure.

Example: A Learning Bound for a Finite Hypothesis Set IV Proof Sketch:

Let $\mathcal{H}_{\varepsilon} := \{ h \in \mathcal{H} \mid L(h) > \varepsilon \}.$ Then, we have

$$
\mathbb{P}\left\{L(\mathcal{A}(\mathcal{S})) > \varepsilon\right\} \leq \mathbb{P}\left\{\exists h \in \mathcal{H}_{\varepsilon}, \hat{L}(h) = 0\right\}
$$
\n
$$
= \mathbb{P}\left\{\bigvee_{h \in \mathcal{H}_{\varepsilon}} \hat{L}(h) = 0\right\}
$$
\n
$$
\leq \sum_{h \in \mathcal{H}_{\varepsilon}} \mathbb{P}\left\{\hat{L}(h) = 0\right\}
$$
\n
$$
\leq \sum_{h \in \mathcal{H}_{\varepsilon}} (1 - \varepsilon)^m
$$
\n
$$
\leq |\mathcal{H}| (1 - \varepsilon)^m.
$$
\n(3)

- \bullet [\(1\)](#page-19-0): we may want a (stronger) "uniform convergence" but data-agnostic bound
- [\(2\)](#page-19-1): union bound due to the finite hypotheses
- [\(3\)](#page-19-2): a special case of the "point" binomial tail bound due to the i.i.d. assumption, $\mathbb{I}\{h(x) \neq y\}$ is a Bernoulli random variable with a parameter of ε , and $m\hat{L}(h)$ is the sum of m Bernoulli random variables.

Next

Relax assumptions:

- What if we have an infinite hypothesis set?
- \bullet What if D is not separable?

We will explore a more general learning bound.