Introduction to Measure Theory

Sangdon Park

POSTECH

September 24, 2024

Motivation

- σ -algebra? distribution? induced distribution?
- Why is this definition valid?

Definition

A random variable X is said to have a $\mathsf{Binomial}(n,p)$ distribution if

$$\mathbb{P}(X=m) \coloneqq \binom{n}{m} p^m (1-p)^{n-m}.$$

Measure?

- How to *measure* the height of a boy?
- How to *measure* the legnth of the width of a table?
- How to *measure* the size of an area?
- How to *measure* the size of a discrete set?

Algebra

Definition (Algebra)

Let Ω be a nonempty set. A set \mathcal{F} is an **algebra** of sets on Ω if it is a nonempty collection of subsets of a set Ω that satisfy

- **(**) if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (*i.e.*, \mathcal{F} is closed under complements), and
- 2 if $A_i, \ldots, A_n \in \mathcal{F}$, then $\bigcup_{i=1}^n A_i \in \mathcal{F}$ (*i.e.*, \mathcal{F} is closed under finite unions).

σ -algebra

Definition (σ -algebra)

Let Ω be a nonempty set. A set \mathcal{F} is a σ -algebra of sets on Ω if it is a nonempty collection of subsets of a set Ω that satisfy

- **(**) if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (*i.e.*, \mathcal{F} is closed under complements), and
- ② if $A_i \in \mathcal{F}$ is a countable sequence of sets, then $\cup_i A_i \in \mathcal{F}$ (*i.e.*, \mathcal{F} is closed under countable unions).
- These implies that a σ-field is closed under countable intersections (*i.e.*, A_i ∈ F ⇒ (∪_iA^c_i)^c = ∩_iA_i ∈ F).

Measurable Space

Definition

A tuple (Ω, \mathcal{F}) is a **measurable space** if Ω is a non-empty set and \mathcal{F} is a σ -algebra.

- A measurable space is a space on which we can put a "measure".
- A probability space is a measure space.
- A σ -algebra allows us to measure an element of \mathcal{F} .

Wait! Why Do We Need These Complicatd Definitions?

- A non-measurable set is a set which cannot be asigned a meaningful "volume".
- \bullet There exists a non-measurable subset of ${\mathbb R}$ in Zermelo–Fraenkel set theory.
- $\bullet~\sigma\text{-algebra}$ is suffficiently huge collection to define a measure.

Measure

Definition

A measure μ on a measureble space (Ω, \mathcal{F}) is a function $\mu : \mathcal{F} \to \mathbb{R}_{\geq 0}$ where

- ${\rm \scriptstyle 0} \ \mu(\emptyset)=0 \ {\rm and} \$
- 2) if $A_i \in \mathcal{F}$ is a countable sequence of disjoint sets, then

$$\mu(\cup_i A_i) = \sum_i \mu(A_i).$$

- If μ is a measure on a measurable space (Ω, \mathcal{F}) , then $(\Omega, \mathcal{F}, \mu)$ is a measure space.
- If $\mu(\Omega) = 1$, we call μ a **probability measure**, denoted by \mathbb{P} .

Probability Space

Definition

A probability space is a measure space $(\Omega,\mathcal{F},\mathbb{P})$ with a probability measure $\mathbb{P},$ where

- Ω is a set of "outcomes",
- $\bullet \ \mathcal{F}$ is a set of "events", and
- $\mathbb{P}:\mathcal{F}\rightarrow [0,1]$ is a function that assigns probabilities to events.

Properties of A Measure

The properties of a measure is derived from the definition of the measure.

Theorem

- Let $\mu : \mathcal{F} \to \mathbb{R}$ be a measure on (Ω, \mathcal{F}) .
 - (Monotonicity) If $A \subset B$, then $\mu(A) \leq \mu(B)$.
 - **2** (Subadditivity) If $A \subset \bigcup_{m=1}^{\infty} A_m$, then $\mu(A) \leq \sum_{m=1}^{\infty} \mu(A_m)$.

Properties of A Measure

The properties of a measure is derived from the definition of the measure.

Theorem

Let
$$\mu : \mathcal{F} \to \mathbb{R}$$
 be a measure on (Ω, \mathcal{F}) .

- (Monotonicity) If $A \subset B$, then $\mu(A) \leq \mu(B)$.
- **3** (Subadditivity) If $A \subset \bigcup_{m=1}^{\infty} A_m$, then $\mu(A) \leq \sum_{m=1}^{\infty} \mu(A_m)$.

3 ...

Proof (Monotonicity).

Let $B - A = B \cup A^c$ be the difference of the two sets. Using + to denote disjoint union, B = A + (B - A) so

$$\mu(B) = \mu(A) + \mu(B - A) \ge \mu(A)$$

due to the definition of a measure.

Measure On The Real Line

How to design a measure? A measure function defines a measure.

Definition

A Stieltjes measure function is a function $F:\mathbb{R}\rightarrow\mathbb{R}$ where

- 9 F is non-decreasing and
- 2 F is right-continuous, *i.e.*,

$$\lim_{y \downarrow x} F(y) = F(x).$$

Thomas Joannes Stieltjes (known for Riemann–Stieltjes integral)

Measure On The Real Line

Can we define a measure by using the Stieltjes measure function?

Theorem

Given a Stieltjes measure function F, there is a unique measure μ on $(\mathbb{R}, \mathcal{R})$ with

$$\mu((a,b]) = F(b) - F(a).$$

- When F(x) = x, the resulting measure is called **Lebesgue measure**.
- *e.g.*, a length of an interval is a measure.

Random Variables

Definition (measurable map)

A function $X: \Omega \to S$ is a measurable map from a measurable space (Ω, \mathcal{F}) to a measurable space (S, \mathcal{S}) if

$$X^{-1}(B) \coloneqq \{\omega \in \Omega \mid X(w) \in B\} \in \mathcal{F} \text{ for all } B \in \mathcal{S}.$$

- Informally, we can *reuse* a measure defined on the measurable space (Ω, \mathcal{F}) .
 - ▶ The measure on the new space is well-defined based on the measure on the old space.
- When $(S, \mathcal{S}) = (\mathbb{R}^d, \mathcal{R}^d)$,
 - ▶ if *d* > 1, then *X* is called a **random vector** and
 - if d = 1, then X is called a **random variable**.
- If Ω is a discrete probability space, then any function $X: \Omega \to \mathbb{R}$ is a random variable.

Distribution

Definition (distribution)

An induced probability measure μ on $(\mathbb{R}, \mathcal{R})$ by a random variable $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{R})$ is called a **distribution**, *i.e.*, for any $B \in \mathcal{R}$

$$\mu(B) \coloneqq \mathbb{P}(X^{-1}(B)).$$

- Redefine a measure over an easy space (*i.e.*, \mathbb{R}) and call it a "distribution"
 - A distribution is a measure.
- A distribution depends on an random variable.
- Is μ a probability measure? Only check the second property of a measure:

For disjoint sets
$$B_i$$
, $\mu(\cup_i B_i) = \mathbb{P}(\cup_i X^{-1}(B_i)) = \sum_i \mathbb{P}(X^{-1}(B_i)) = \sum_i \mu(B_i)$.

• How to (easily) represent a distribution? Redefine a simple function over \mathbb{R} .

Distribution Functions

Definition

A (usual) distribution function of a random variable $X : \mathbb{R} \to \mathbb{R}$ is the function $F : \mathbb{R} \to \mathbb{R}$ defined by

$$F(x) \coloneqq \mathbb{P}(X \le x).$$

- a.k.a. a cumulative distribution function (CDF)
- In the real line, due to the monotonicity of a measure, CDF is enough to define a measure.

Density Functions

Definition

X has a **density function** f_X if a distribution function $F(x) = \mathbb{P}(X \leq x)$ has the form

$$F(x) = \int_{-\infty}^{x} f_X(y) \mathrm{d}y.$$

- Normal distribution: $f_X(x) \coloneqq \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
- Once a density function is defined, the probability measure is indirectly defined.
 - ▶ We don't need to define the probability measure in the original space directly.

More Facts on Random Variables

Theorem

If X_1, \ldots, X_n are random variables and $f : (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \ldots, X_n)$ is a random variable.

More Facts on Random Variables

Theorem

If X_1, \ldots, X_n are random variables and $f : (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \ldots, X_n)$ is a random variable.

Theorem

If X_1, \ldots, X_n are random variables, then $X_1 + \cdots + X_n$ is a random variable.

More Facts on Random Variables

Theorem

If X_1, \ldots, X_n are random variables and $f : (\mathbb{R}^n, \mathcal{R}^n) \to (\mathbb{R}, \mathcal{R})$ is measurable, then $f(X_1, \ldots, X_n)$ is a random variable.

Theorem

If X_1, \ldots, X_n are random variables, then $X_1 + \cdots + X_n$ is a random variable.

Theorem (product measure)

If $(\Omega_i, \mathcal{F}_i, \mu_i)$ for i = 1, ..., n are measure spaces and $\Omega \coloneqq \Omega_1 \times ... \Omega_n$, there is a unique measure μ on $(\prod_i \Omega_i, \prod_i \mathcal{F}_i)$ where

$$\mu(A_1 \times \dots \times A_n) = \prod_i \mu_i(A_i)$$

for any $A_i \in \mathcal{F}_i$.

Binomial Distribution

Definition

A random variable X is said to have a Binomial(n, p) distribution if

$$\mathbb{P}(X=m) \coloneqq \binom{n}{m} p^m (1-p)^{n-m}.$$

- The Binomial random variable is a sum of Bernoulli random variables.
- It usually explained via a sequence of coin flipping.
- We define a probability measure on the original space.
- How can it be redefined over \mathbb{N} ?
- Why do we have this Binomial distribution?

Binomial Distribution I

Proof Sketch:

- **(**) We have a probability space $(\Omega, \mathcal{F}, \mathbb{P}_0)$
 - ► a sample space $\Omega \coloneqq \{$ "S" , "F" $\}$
 - ▶ $\mathbb{P}_0(\emptyset) = 0$, $\mathbb{P}_0(\{\text{``S''}\}) = p$, $\mathbb{P}_0(\{\text{``F''}\}) = 1 p$, $\mathbb{P}_0(\{\text{``S''}, \text{``F''}\}) = 1$
- **2** Consider a Bernoulli random variable where $X_i("S") = 1$ and $X_i("F") = 0$.
 - a probability space $(S_i, \mathcal{S}_i, \mathbb{P}_i)$
 - $\blacktriangleright S_i \coloneqq \{0,1\}$
 - $\mathbb{P}_i(X_i = 1) = p$ and $\mathbb{P}_i(X_i = 0) = 1 p$.
- **3** Consider a new random variable $X : S_1 \times \cdots \times S_n \to S$, where $X := \sum_{i=1}^n X_i$ and X_1, \ldots, X_n are independent and identically distributed.
 - a probability space $(S, \mathcal{S}, \mathbb{P})$
 - $\blacktriangleright \ S \coloneqq \{0, 1, \dots, n\}$
 - Consider some product probability space, *i.e.*, $(S, S, \mathbb{P}) \equiv (S', S', \mathbb{P}')$, where $S' \coloneqq \prod_i S_i$, $S' \coloneqq \prod_i S_i$, and $\mathbb{P}' \coloneqq \prod_i \mathbb{P}_i$.

Binomial Distribution II

• $\mathbb{P}(X=m)$? Let $\mathcal{A}_m \subseteq S_1 \times \cdots \times S_n$ be a bit string with m ones.

$$\mathbb{P}(X = m) = \mathbb{P}'\left(\bigcup_{A \in \mathcal{A}_m} \left((X_1, \dots, X_n) = A \right) \right)$$
$$= \sum_{A \in \mathcal{A}_m} \mathbb{P}'\left((X_1, \dots, X_n) = A \right)$$
$$= \sum_{A \in \mathcal{A}_m} \prod_{i=1}^n \mathbb{P}_i \left(X_i = A_i \right)$$
$$= \sum_{A \in \mathcal{A}_m} p^m (1-p)^{n-m} = \binom{n}{m} p^m (1-p)^{n-m}.$$