Introduction to Measure Theory

Sangdon Park

POSTECH

September 24, 2024

Motivation

 \bullet σ -algebra? distribution? induced distribution?

2 Why is this definition valid?

Definition

A random variable X is said to have a Binomial (n, p) distribution if

$$
\mathbb{P}(X=m) \coloneqq \binom{n}{m} p^m (1-p)^{n-m}.
$$

³ Rigorus proof

Measure?

- How to *measure* the height of a boy?
- How to *measure* the legnth of the width of a table?
- How to *measure* the size of an area?
- **e** How to *measure* the size of a discrete set?

Algebra

Definition (Algebra)

Let Ω be a nonempty set. A set F is an **algebra** of sets on Ω if it is a nonempty collection of subsets of a set Ω that satisfy

- **1** if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (i.e., \mathcal{F} is closed under complements), and
- \bullet if $A_i,\ldots,A_n\in\mathcal{F}$, then $\cup_{i=1}^nA_i\in\mathcal{F}$ (*i.e.,* $\mathcal F$ is closed under finite unions).

σ-algebra

Definition (σ -algebra)

Let Ω be a nonempty set. A set F is a σ -algebra of sets on Ω if it is a nonempty collection of subsets of a set Ω that satisfy

- **1** if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$ (*i.e.,* \mathcal{F} is closed under complements), and
- **2** if $A_i \in \mathcal{F}$ is a countable sequence of sets, then $\cup_i A_i \in \mathcal{F}$ (*i.e., F* is closed under countable unions).
- These implies that a σ -field is closed under countable intersections (*i.e.*, $A_i \in \mathcal{F} \Longrightarrow (\cup_i A_i^c)^c = \cap_i A_i \in \mathcal{F}$).

Measurable Space

Definition

A tuple (Ω, \mathcal{F}) is a **measurable space** if Ω is a non-empty set and \mathcal{F} is a σ -algebra.

- A measurable space is a space on which we can put a "measure".
- A probability space is a measure space.
- A σ -algebra allows us to measure an element of \mathcal{F} .

Wait! Why Do We Need These Complicatd Definitions?

- A non-measurable set is a set which cannot be asigned a meaningful "volume".
- \bullet There exists a non-measurable subset of $\mathbb R$ in Zermelo–Fraenkel set theory.
- \bullet σ -algebra is suffficiently huge collection to define a measure.

Measure

Definition

A **measure** μ on a measureble space (Ω, \mathcal{F}) is a function $\mu : \mathcal{F} \to \mathbb{R}_{\geq 0}$ where

- $\mathbf{0} \ \mu(\emptyset) = 0$ and
- **2** if $A_i \in \mathcal{F}$ is a countable sequence of disjoint sets, then

$$
\mu(\cup_i A_i) = \sum_i \mu(A_i).
$$

- **If** μ is a measure on a measurable space (Ω, \mathcal{F}) , then $(\Omega, \mathcal{F}, \mu)$ is a **measure space**.
- If $\mu(\Omega) = 1$, we call μ a **probability measure**, denoted by P.

Probability Space

Definition

A probability space is a measure space $(\Omega, \mathcal{F}, \mathbb{P})$ with a probability measure P, where

- \bullet Ω is a set of "outcomes",
- \bullet $\cal F$ is a set of "events", and
- $\bullet \mathbb{P}: \mathcal{F} \to [0, 1]$ is a function that assigns probabilities to events.

Properties of A Measure

The properties of a measure is derived from the definition of the measure.

Theorem

- Let $\mu : \mathcal{F} \to \mathbb{R}$ be a measure on (Ω, \mathcal{F}) .
	- \bigodot (Monotonicity) If $A \subset B$, then $\mu(A) \leq \mu(B)$.
	- **2** (Subadditivity) If $A \subset \cup_{m=1}^{\infty} A_m$, then $\mu(A) \leq \sum_{m=1}^{\infty} \mu(A_m)$.

³ . . .

Properties of A Measure

The properties of a measure is derived from the definition of the measure.

Theorem

Let
$$
\mu : \mathcal{F} \to \mathbb{R}
$$
 be a measure on (Ω, \mathcal{F}) .

 \bigcirc (Monotonicity) If $A \subset B$, then $\mu(A) \leq \mu(B)$.

2 (Subadditivity) If $A \subset \cup_{m=1}^{\infty} A_m$, then $\mu(A) \leq \sum_{m=1}^{\infty} \mu(A_m)$.

³ . . .

Proof (Monotonicity).

Let $B - A = B \cup A^c$ be the difference of the two sets. Using + to denote disjoint union, $B = A + (B - A)$ so

$$
\mu(B) = \mu(A) + \mu(B - A) \ge \mu(A)
$$

due to the definition of a measure.

Measure On The Real Line

How to design a measure? A measure function defines a measure.

Definition

A Stielties measure function is a function $F : \mathbb{R} \to \mathbb{R}$ where

- \bullet F is non-decreasing and
- \bullet F is right-continuous, *i.e.*,

$$
\lim_{y \downarrow x} F(y) = F(x).
$$

Thomas Joannes Stieltjes (known for Riemann–Stieltjes integral)

Measure On The Real Line

Can we define a measure by using the Stieltjes measure function?

Theorem

Given a Stielties measure function F, there is a unique measure μ on $(\mathbb{R}, \mathcal{R})$ with

$$
\mu((a,b]) = F(b) - F(a).
$$

- When $F(x) = x$, the resulting measure is called Lebesgue measure.
- e.g., a length of an interval is a measure.

Random Variables

Definition (measurable map)

A function $X:\Omega\to S$ is a **measurable map** from a measurable space (Ω,\mathcal{F}) to a measurable space (S, \mathcal{S}) if

$$
X^{-1}(B) \coloneqq \{ \omega \in \Omega \mid X(w) \in B \} \in \mathcal{F} \text{ for all } B \in \mathcal{S}.
$$

- **Informally, we can reuse a measure defined on the measurable space** (Ω, \mathcal{F}) **.**
	- \triangleright The measure on the new space is well-defined based on the measure on the old space.
- When $(S, \mathcal{S}) = (\mathbb{R}^d, \mathcal{R}^d)$,
	- \triangleright if $d > 1$, then X is called a **random vector** and
	- \blacktriangleright if $d = 1$, then X is called a random variable.
- If Ω is a discrete probability space, then any function $X : \Omega \to \mathbb{R}$ is a random variable.

Distribution

Definition (distribution)

An induced probability measure μ on $(\mathbb{R}, \mathcal{R})$ by a random variable $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{R})$ is called a **distribution**, *i.e.*, for any $B \in \mathcal{R}$

$$
\mu(B) \coloneqq \mathbb{P}(X^{-1}(B)).
$$

- Redefine a measure over an easy space (*i.e.*, \mathbb{R}) and call it a "distribution"
	- \triangleright A distribution is a measure.
- A distribution depends on an random variable.
- Is μ a probability measure? Only check the second property of a measure:

For disjoint sets
$$
B_i
$$
, $\mu(\cup_i B_i) = \mathbb{P}(\cup_i X^{-1}(B_i)) = \sum_i \mathbb{P}(X^{-1}(B_i)) = \sum_i \mu(B_i)$.

 \bullet How to (easily) represent a distribution? Redefine a simple function over \mathbb{R} .

Distribution Functions

Definition

A (usual) distribution function of a random variable $X : \mathbb{R} \to \mathbb{R}$ is the function $F : \mathbb{R} \to \mathbb{R}$ defined by

$$
F(x) := \mathbb{P}(X \le x).
$$

- a.k.a. a cumulative distribution function (CDF)
- In the real line, due to the monotonicity of a measure, CDF is enough to define a measure.

Density Functions

Definition

X has a **density function** f_X if a distribution function $F(x) = P(X \le x)$ has the form

$$
F(x) = \int_{-\infty}^{x} f_X(y) \mathrm{d}y.
$$

- Normal distribution: $f_X(x) \coloneqq \frac{1}{\sigma \sqrt{x}}$ $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
- Once a density function is defined, the probability measure is indirectly defined.
	- \triangleright We don't need to define the probability measure in the original space directly.

More Facts on Random Variables

Theorem

If X_1,\ldots,X_n are random variables and $f:(\mathbb{R}^n,\mathcal{R}^n)\to (\mathbb{R},\mathcal{R})$ is measurable, then $f(X_1, \ldots, X_n)$ is a random variable.

More Facts on Random Variables

Theorem

If X_1,\ldots,X_n are random variables and $f:(\mathbb{R}^n,\mathcal{R}^n)\to (\mathbb{R},\mathcal{R})$ is measurable, then $f(X_1, \ldots, X_n)$ is a random variable.

Theorem

If X_1, \ldots, X_n are random variables, then $X_1 + \cdots + X_n$ is a random variable.

More Facts on Random Variables

Theorem

If X_1,\ldots,X_n are random variables and $f:(\mathbb{R}^n,\mathcal{R}^n)\to (\mathbb{R},\mathcal{R})$ is measurable, then $f(X_1, \ldots, X_n)$ is a random variable.

Theorem

If X_1, \ldots, X_n are random variables, then $X_1 + \cdots + X_n$ is a random variable.

Theorem (product measure)

If $(\Omega_i,\mathcal F_i,\mu_i)$ for $i=1,\ldots,n$ are measure spaces and $\Omega\coloneqq\Omega_1\times\ldots\Omega_n$, there is a unique measure μ on $(\prod_i \Omega_i, \prod_i \mathcal{F}_i)$ where

$$
\mu(A_1 \times \cdots \times A_n) = \prod_i \mu_i(A_i)
$$

for any $A_i \in \mathcal{F}_i$.

Binomial Distribution

Definition

A random variable X is said to have a Binomial (n, p) distribution if

$$
\mathbb{P}(X = m) \coloneqq {n \choose m} p^m (1-p)^{n-m}.
$$

- The Binomial random variable is a sum of Bernoulli random variables.
- It usually explained via a sequence of coin flipping.
- We define a probability measure on the original space.
- \bullet How can it be redefined over \mathbb{N} ?
- Why do we have this Binomial distribution?

Binomial Distribution I

Proof Sketch:

- \bullet We have a probability space $(\Omega, \mathcal{F}, \mathbb{P}_0)$
	- \triangleright a sample space $\Omega := \{$ "S", "F" }
	- ► $\mathbb{P}_0(\emptyset) = 0$, $\mathbb{P}_0(\{$ "S" }) = p, $\mathbb{P}_0(\{$ "F" }) = 1 p, $\mathbb{P}_0(\{$ "S", "F" }) = 1
- **2** Consider a Bernoulli random variable where X_i ("S") = 1 and X_i ("F") = 0.
	- \blacktriangleright a probability space $(S_i, \mathcal{S}_i, \mathbb{P}_i)$
	- $\blacktriangleright S_i \coloneqq \{0,1\}$
	- \blacktriangleright $\mathbb{P}_i(X_i = 1) = p$ and $\mathbb{P}_i(X_i = 0) = 1 p$.
- 3 Consider a new random variable $X:S_1\times \cdots \times S_n\to S$, where $X\coloneqq \sum_{i=1}^n X_i$ and X_1, \ldots, X_n are independent and identically distributed.
	- \blacktriangleright a probability space $(S, \mathcal{S}, \mathbb{P})$
	- $\blacktriangleright S := \{0, 1, \ldots, n\}$
	- ► Consider some product probability space, *i.e.*, $(S, \mathcal{S}, \mathbb{P}) \equiv (S', \mathcal{S}', \mathbb{P}'),$ where $S' \coloneqq \prod_i S_i$, $\mathcal{S}'\coloneqq\prod_i\mathcal{S}_i$, and $\mathbb{P}'\coloneqq\prod_i\mathbb{P}_i$.

Binomial Distribution II

▶ $\mathbb{P}(X = m)$? Let $\mathcal{A}_m \subseteq S_1 \times \cdots \times S_n$ be a bit string with m ones.

$$
\mathbb{P}(X = m) = \mathbb{P}' \left(\bigcup_{A \in \mathcal{A}_m} ((X_1, \dots, X_n) = A) \right)
$$

=
$$
\sum_{A \in \mathcal{A}_m} \mathbb{P}'((X_1, \dots, X_n) = A)
$$

=
$$
\sum_{A \in \mathcal{A}_m} \prod_{i=1}^n \mathbb{P}_i (X_i = A_i)
$$

=
$$
\sum_{A \in \mathcal{A}_m} p^m (1 - p)^{n - m} = {n \choose m} p^m (1 - p)^{n - m}.
$$