
Trustworthy	Machine	Learning
Security	in	Large	Code	Generation

Sangdon	Park
POSTECH



Contents
§ Insecure	Code	Generation
§ Is it really a	problem	in	coding?
§ Secure	Code	Generation

2/30



Insecure	Code	Generation	(S&P22)

https://arxiv.org/pdf/2108.09293.pdf
3/30



Github	Copilot	(1/2)
§Github’s	coding	assistant	backed	by	OpenAI	Codex	(≅GPT-3)

Prompt

Generated code

4/30



Github	Copilot

Provide multiple completions

Likelihood

5/30



CWE:	Common	Weakness	Enumeration

6/30



Top	25	CWE
Stack-based Buffer Overflow

7/30



Evaluation	Methods

Prepare CWE scenarios

Generate remaining code 
25 times

Concatenate

Find vulnerabilitis

8/30



CWE-787:	Out-of-bounds	Write

9/30



CWE-79:	Improper	Neutralization	of	Input	During	
Web	Page	Generation	(‘Cross-site	Scripting’)

10/30



More	Quantitative	Results

11/30



Are	Code	Generators	Absolutely	Bad?
§Here,	code	was	generated	based	on	”scenarios”	that	might	
generate	vulnerable	code
§ Worst-case	analysis

§How	about	using	code	generators	in	daily	usages?
§ Average-case analysis

12/30



A	User	Study	on	Code	Generation	Security	(Security	23)

13/30



User-Study Setup

”Control” group”Assisted” group

58 Undergrade and grade students write 
C code for implementing “shopping list” Manual analysis

14/30



Result:	Functionality

Control: Manually write code
Assisted: Use a LLM and then edit the generated code
Autopilot: fully generated by a LLM

<<

15/30



Result:	Security	Analysis

< < < <

16/30



Code	Assistant	is	Not	Too	Bad?
§Message:	code	assistant	can	mitigate	vulnerabilities	in	human-
edited	code

§ Limitations
§ Limited	scenario: “shopping	list”

17/30



More	Secure	Code	Generation	(CCS23)

18/30



Controlled Code Generation

Goal: 
learn a generator that generates either secure code or unsafe code

19/30



Commit-based	Dataset

Code before a 
GitHub commit

Code after a 
GitHub commit

Removed (in line-level)

Added (in line-level)Added (in character-level)

Leverage code difference 20/30



Loss:	Conditional	Language	Model	Loss

“secure” or “vulnerable”

1 if a token is from a secure area e.g., When c=“secure” with character-level masks

000000000000000000000000
00000000001111111111111110000000000000001
00000000000000000000000000000000000000

21/30



Loss:	Contrastive	Loss

e.g., When c=“secure” with character-level masks

Maximize the relative gap of probabilities

Secure code

Unsafe code

22/30



Loss: Preserving Functional Correctness

Neural tokens

e.g., When c=“secure” with character-level masks

Token probability 
from the secure LM

Token probability 
from the original LM

23/30



Final	Loss

What is the optimization parameter?

24/30



Prefix	Tuning

25/30



Results:	Functional	Correctness

pass@k ≅ fraction of generated code that passes unit tests among >=k generation

HumanEval: https://arxiv.org/pdf/2107.03374.pdf
26/30



Quantitative	Results:	Secure	Code	Generation
LM SVENsec SVENvul

Security rate
(ratio of code with bugs, 

detected via CodeQL)

27/30



Qualitative	Results:	Secure	Code	Generation
CWE-476,	Null	Pointer	Dereference

SVENVul

SVENsec

28/30



Qualitative	Results:	Secure	Code	Generation
CWE-125,	Out-of-bounds	Read

LM, SVENVul

SVENsec

29/30



Conclusion
§ Exicting	problems	in	code	generation	due	to	the	advance	of	
LLMs

30/30


