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Contents from

and contents partially from slides by Roger Grosse at University of Toronto.
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Why Fairness in Learning?

Translation from English to Turkish, then back to English injects gender bias.
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Why Fairness in Learning?

The machine learning loop

Biased models enforce the bias of the world.
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Fairness in Learning: Overview

Goal

Identify and mitigate “bias” in ML-based decision making.

Source of bias:

Data
▶ imbalanced data (e.g., rare data, gender-biased data)
▶ incorrect data (e.g., noisy data, data with historical bias)

Model
▶ modeling error
▶ bias in loss

Credit: Richard Zemel
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Fairness in Learning: Definitions

Known definitions
▶ Demographic parity
▶ Equalized odds
▶ Equal opportunity
▶ Equal (weak) calibration
▶ Equal (strong) calibration
▶ Fair subgroup accuracy
▶ ...

Definitions are controversial and should be used depending on applications.
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Setup

Supervised learning for binary classification

f : a classifier

Y ∈ {0, 1}: an outcome

X: features

A ∈ {0, 1}: a protected attribute

Ŷ := f(X,A) ∈ {0, 1}: a prediction
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Demographic Parity

Definition (demographic parity)

P

{
Ŷ = 1

∣∣∣ A = 0
}
= P

{
Ŷ = 1

∣∣∣ A = 1
}

Its variants appears in many papers.

Is this definition okay?
✗ Actually not quite fair (in some common sense)

⋆ A classifier accepts qualified applicants in A = 0 but unqualified applicants in A = 1.
⋆ e.g., when we don’t have enough training samples for A = 1, this constraint forces to have

Ŷ = 1 for A = 1.

✗ This definition does not allow the perfect predictor Ŷ = Y .
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Better Fairness Definitions

Definition (equalized odd)

We say that a predictor Ŷ satisfies equalized odds with respect to the protected attribute A
and outcome Y if Ŷ and A are independent conditional on Y , e.g.,

P

{
Ŷ = 1

∣∣∣ A = 0, Y = y
}
= P

{
Ŷ = 1

∣∣∣ A = 1, Y = y
}

∀y ∈ {0, 1}.

The definition is applicable to other setups, e.g., multi-class classification.

If y = 1, this constrains equalizes true positive rates for both A = 0 and A = 1.

If y = 0, this constraint equalizes false positive rates for both A = 0 and A = 1.

Is this enough?

✗ The accuracy is equally high for all demographics → a model good at the majority will be
penalized.
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Better Fairness Definitions

Definition (Equal opportunity)

We say that a binary predictor Ŷ satisfies equal opportunity with respect to A and Y if

P

{
Ŷ = 1

∣∣∣ A = 0, Y = 1
}
= P

{
Ŷ = 1

∣∣∣ A = 1, Y = 1
}
.

Suppose Y = 1 is the “advantaged” outcome.

Equal opportunity is weaker than equalized odd but typically allows stronger utility.
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A Score-based Predictor

A score-based predictor

Ŷ = 1

(
R̂ > t

)
We consider a real valued score R̂ ∈ [0, 1], from which a classifier decides a label.

e.g., a neural network R = fNN(X)

Here, we suppose a pre-trained model is given and fixed; only change the threshold.

The equalized odds and equal opportunity definitions are characterized by true positive
and false positive rates, which is controlled by the threshold, i.e.,

(FP) = P

{
R̂ > t

∣∣∣ A = a, Y = 0
}

(TP) = P

{
R̂ > t

∣∣∣ A = a, Y = 1
}
.
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Receiver Operator Characteristic (ROC) Curves

A-conditional ROC Curves

Ca(t) :=
(
P

{
R̂ > t

∣∣∣ A = a, Y = 0
}

︸ ︷︷ ︸
false positive (FP)

,P
{
R̂ > t

∣∣∣ A = a, Y = 1
}

︸ ︷︷ ︸
true positive (TP)

)

Picture Credit: Ilyurek Kilic

t ↑ → FP ↓ and TP ↓.
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Algorithm for Equalized Odds

Assume that two ROC curves are intersected, so let the intersecting points be (FP∗,TP∗)

Find (t0, t1) such that C0(t0) = (FP∗,TP∗) and C1(t1) = (FP∗,TP∗).

Our classifier is Ŷ := 1

(
R̂ > ta

)
✗ The accuracy is determined; when the accuracy is poor, no room to tune.
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Algorithm for Equal Opportunity

Our classifier is Ŷ := 1

(
R̂ > ta

)
.

The algorithm solves the following constraint minimization.

min
t0,t1

E ℓ(Ŷ , Y ) s.t. TP0(Ŷ ) = TP1(Ŷ )

▶ ℓ: loss
14 / 18



Experiments: FICO Score (1/2)

FICO score R̂: a classifier to predict credit worthiness

Y = (non-default): failed to pay a debt

A: a race attribute (i.e., Asian, white, Hispanic, black)
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Experiments: FICO Score (2/2)

Ŷ := 1

(
R̂ > 620

)
: A standard clasisfier; is this fair classifier?

(right x axis): rescaled, within-group score percentile

(the fraction of the right shaded area) = P{Ŷ = 1 | Y = 1, A}
Black non-defaulters are less likley to quantify for loans (than white or Asian ones)

This classifier violates the fairness in equal opportunity.

Satisfy the qualized odds?
16 / 18



Experiments: FICO Score (2/2)
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Ŷ := 1

(
R̂ > 620

)
: A standard clasisfier; is this fair classifier?

(right x axis): rescaled, within-group score percentile

(the fraction of the right shaded area) = P{Ŷ = 1 | Y = 1, A}
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Experiments: Utility Performance

Equal oppertunity blaances well between utility and fairness.
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Conclusion

Fairness definitions
1 Demographic parity
2 Equalized Odds
3 Equal Opportunity

Fairness algorithms
1 Algorithm for Equalized Odds
2 Algorithm for Equal Opertunity

There are neither “(ε, δ)-fairness” nor the proof of fairness; why?
▶ Proving the fairness may be impossible without clearly understanding on domain-specific

knowledge.
▶ Fairness through Awareness!
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