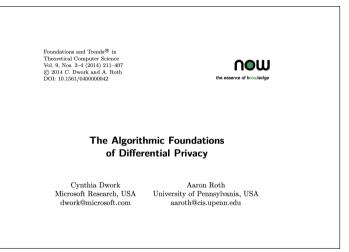
Trustworthy Machine Learning Differential Privacy 1

Sangdon Park

POSTECH

Contents from



• and contents partially from Gautam Kamath at University of Waterloo and Roger Grosse at University of Toronto.

Why Privacy Guarantees in Learning?

• Not anonymized dataset for learning - privacy leak

Why Privacy Guarantees in Learning?

- Not anonymized dataset for learning privacy leak
- Anonymized dataset for learning looks okay but possible to leak private information

Why Privacy Guarantees in Learning?

Anonymized Dataset

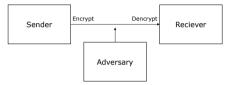
Name	Age	Gender	Zip Code	Smoker	Diagnosis
*	60-70	Male	191**	Y	Heart disease
*	60-70	Female	191**	N	Arthritis
*	60-70	Male	191**	Y	Lung cancer
*	60-70	Female	191**	N	Crohn's disease
*	60-70	Male	191**	Y	Lung cancer
*	50-60	Female	191**	N	HIV
*	50-60	Male	191**	Y	Lyme disease
*	50-60	Male	191**	Y	Seasonal allergies
*	50-60	Female	191**	N	Ulcerative colitis

Figure: An example from Kearns & Roth, The Ethical Algorithm

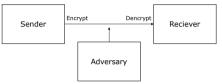
- anonymized dataset looks okay but still privacy leak
 - If we know Rebecca is 55 years old and in this database, then we know she has 1 of 2 diseases.

• Just encrypt the entire data.

- Just encrypt the entire data.
- Entities in encryption: Sender, Receiver, and Adversary



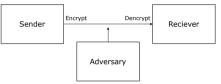
- Just encrypt the entire data.
- Entities in encryption: Sender, Receiver, and Adversary



• Entities in learning, Sender (a.k.a. Curator) and Receiver = Adversary (a.k.a. Analyst)



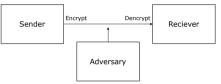
- Just encrypt the entire data.
- Entities in encryption: Sender, Receiver, and Adversary



• Entities in learning, Sender (a.k.a. Curator) and Receiver = Adversary (a.k.a. Analyst)

• e.g., a learning algorithm (=curator) releases a model for some "benefits"

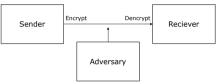
- Just encrypt the entire data.
- Entities in encryption: Sender, Receiver, and Adversary



• Entities in learning, Sender (a.k.a. Curator) and Receiver = Adversary (a.k.a. Analyst)

- e.g., a learning algorithm (=curator) releases a model for some "benefits"
- But, the model should not reveal private information.

- Just encrypt the entire data.
- Entities in encryption: Sender, Receiver, and Adversary



• Entities in learning, Sender (a.k.a. Curator) and Receiver = Adversary (a.k.a. Analyst)

- e.g., a learning algorithm (=curator) releases a model for some "benefits"
- But, the model should not reveal private information.
- Note that homomorphic encryption could be alternatives but slow (yet)

Goal for Privacy In Learning

Goal

Learning nothing about an individual while learning useful information about a population.

- Here, an algorithm can transform a dataset into another dataset
- Sender: an algorithm that releases a model
- Reciever: A model user

Goal for Privacy In Learning

Goal

Learning nothing about an individual while learning useful information about a population.

- Here, an algorithm can transform a dataset into another dataset
- Sender: an algorithm that releases a model
- Reciever: A model user
- How to achieve this goal? Add noise!

An Example

- Goal of a survey: estimate a statistic on illegal behaviors of participants
 - Curator: a participant
 - ► Analyst: a researcher

An Example

- Goal of a survey: estimate a statistic on illegal behaviors of participants
 - Curator: a participant
 - Analyst: a researcher
- Each participant follows the following survey process:
 - Flip a coin
 - If "tails", then respond truthfully.
 - If "heads", then flip a second coin and respond "Yes" if "heads" and "No" if "tails".

General Description

$$Y_i = \begin{cases} X_i & \text{ with probability } \frac{1}{2} + \gamma \\ 1 - X_i & \text{ with probability } \frac{1}{2} - \gamma, \end{cases}$$

- $X_i \in \{0,1\}$: the truthful response
- $Y_i \in \{0,1\}$: a randomized response
- $\gamma = 0$: a uniformly random strategy
 - 🗸 private
 - ✗ not informative
- $\gamma = 1/2$: an honest strategy
 - 🗡 no privacy
 - \checkmark informative
- $\gamma = 1/4$: the previous example.
 - $\checkmark\,$ private $\rightarrow\,$ no learning on an individual response
 - \checkmark informative \rightarrow learning on a population statistic

How Informative?

$$Y_i = \begin{cases} X_i & \text{with probability } \frac{1}{2} + \gamma \\ 1 - X_i & \text{with probability } \frac{1}{2} - \gamma, \end{cases}$$

• How to estimate $p = \mathbb{E}\{X_i\}$?

How Informative?

$$Y_i = \begin{cases} X_i & \text{with probability } \frac{1}{2} + \gamma \\ 1 - X_i & \text{with probability } \frac{1}{2} - \gamma, \end{cases}$$

- How to estimate $p = \mathbb{E}\{X_i\}$?
- Observe that

$$\mathbb{E}\{Y_i\} = X_i \left(\frac{1}{2} + \gamma\right) + (1 - X_i) \left(\frac{1}{2} - \gamma\right) = 2\gamma X_i + \frac{1}{2} - \gamma \implies X_i = \mathbb{E}\left\{\frac{1}{2\gamma} \left(Y_i - \frac{1}{2} + \gamma\right)\right\}$$

How Informative?

$$Y_i = \begin{cases} X_i & \text{with probability } \frac{1}{2} + \gamma \\ 1 - X_i & \text{with probability } \frac{1}{2} - \gamma, \end{cases}$$

- How to estimate $p = \mathbb{E}\{X_i\}$?
- Observe that

$$\mathbb{E}\{Y_i\} = X_i\left(\frac{1}{2} + \gamma\right) + (1 - X_i)\left(\frac{1}{2} - \gamma\right) = 2\gamma X_i + \frac{1}{2} - \gamma \implies X_i = \mathbb{E}\left\{\frac{1}{2\gamma}\left(Y_i - \frac{1}{2} + \gamma\right)\right\}$$

• Consider the following estimator:

$$\hat{p} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2\gamma} \left(Y_i - \frac{1}{2} + \gamma \right) \right)$$

How Informative?

$$Y_i = \begin{cases} X_i & \text{with probability } \frac{1}{2} + \gamma \\ 1 - X_i & \text{with probability } \frac{1}{2} - \gamma, \end{cases}$$

- How to estimate $p = \mathbb{E}\{X_i\}$?
- Observe that

$$\mathbb{E}\{Y_i\} = X_i\left(\frac{1}{2} + \gamma\right) + (1 - X_i)\left(\frac{1}{2} - \gamma\right) = 2\gamma X_i + \frac{1}{2} - \gamma \implies X_i = \mathbb{E}\left\{\frac{1}{2\gamma}\left(Y_i - \frac{1}{2} + \gamma\right)\right\}$$

• Consider the following estimator:

$$\hat{p} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2\gamma} \left(Y_i - \frac{1}{2} + \gamma \right) \right)$$

• We have

$$\mathbb{E}\{\hat{p}\} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2\gamma} \left(\mathbb{E}\{Y_i\} - \frac{1}{2} + \gamma \right) \right) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2\gamma} \left(\left(2\gamma \mathbb{E}\{X_i\} + \frac{1}{2} - \gamma \right) - \frac{1}{2} + \gamma \right) \right) = \mathbb{E}\{X_i\}.$$

How Informative?

$$Y_i = \begin{cases} X_i & \text{with probability } \frac{1}{2} + \gamma \\ 1 - X_i & \text{with probability } \frac{1}{2} - \gamma, \end{cases}$$

- How to estimate $p = \mathbb{E}\{X_i\}$?
- Observe that

$$\mathbb{E}\{Y_i\} = X_i\left(\frac{1}{2} + \gamma\right) + (1 - X_i)\left(\frac{1}{2} - \gamma\right) = 2\gamma X_i + \frac{1}{2} - \gamma \implies X_i = \mathbb{E}\left\{\frac{1}{2\gamma}\left(Y_i - \frac{1}{2} + \gamma\right)\right\}$$

• Consider the following estimator:

$$\hat{p} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2\gamma} \left(Y_i - \frac{1}{2} + \gamma \right) \right)$$

• We have

$$\mathbb{E}\{\hat{p}\} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2\gamma} \left(\mathbb{E}\{Y_i\} - \frac{1}{2} + \gamma \right) \right) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2\gamma} \left(\left(2\gamma \mathbb{E}\{X_i\} + \frac{1}{2} - \gamma \right) - \frac{1}{2} + \gamma \right) \right) = \mathbb{E}\{X_i\}.$$

 The randomized response looks "working"! How to rigorously measure whether this method does not leak privacy?

Differential Privacy

Definition

A randomized algorithm \mathcal{M} is (ε, δ) -differentially private if for any $\mathcal{S} \in \text{Range}(\mathcal{M})$ and for any two "neighboring" datasets \mathcal{D}_1 and \mathcal{D}_2 ,

$$\mathbb{P}\left\{\mathcal{M}(\mathcal{D}_1) \in \mathcal{S}\right\} \le \exp(\varepsilon) \mathbb{P}\left\{\mathcal{M}(\mathcal{D}_2) \in \mathcal{S}\right\} + \delta,$$

where the probability is taken over the randomness of \mathcal{M} .

• If \mathcal{M} behaves nearly identically for \mathcal{D}_1 and \mathcal{D}_2 , an attacker cannot tell whether \mathcal{D}_1 or \mathcal{D}_2 was used (so cannot learn an individual information)

Randomized Response is DP

Theorem

The randomized response is $(\ln 3, 0)$ -differentially private.

Randomized Response is DP

Theorem

The randomized response is $(\ln 3, 0)$ -differentially private.

Proof sketch.

- \mathcal{M} : a randomized response
 - $\mathcal{M}(X_1,\ldots,X_n) = (Y_1,\ldots,Y_n)$
- Let $\gamma = \frac{1}{4}$
- Consider any realization $\mathcal{S} \in \{0,1\}^n$ of (Y_1,\ldots,Y_n) .
- Consider X and X' which differ only in coordinate j.
- Then, we have

$$\frac{\mathbb{P}\{\mathcal{M}(X) = a\}}{\mathbb{P}\{\mathcal{M}(X') = a\}} = \frac{\prod_{i=1}^{n} \mathbb{P}\{\mathcal{M}(X_i) = a_i\}}{\prod_{i=1}^{n} \mathbb{P}\{\mathcal{M}(X'_i) = a_i\}} = \frac{\mathbb{P}\{\mathcal{M}(X_j) = a_j\}}{\mathbb{P}\{\mathcal{M}(X'_j) = a_j\}} = \frac{\mathbb{P}\{Y_j = a_j\}}{\mathbb{P}\{Y'_j = a_j\}} \le \frac{1/2 + \gamma}{1/2 - \gamma} = e^{\ln 3}$$

• The inequality holds when $X_j = a_j$ and $X'_j \neq a_j$.

Laplace Mechanism

Definition

Given any function $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^k$, the Laplace mechanism is defined as:

$$\mathcal{M}_L(x, f, \varepsilon) \coloneqq f(x) + (Y_1, \dots, Y_k),$$

where Y_i are i.i.d. random variables drawn from Lap $\left(f(x)_i | \frac{\Delta f}{\varepsilon}\right)$.

• Lap
$$(x|b) = Lap(b) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right)$$

• The $\ell_1\text{-sensitivity of a function }f:\mathbb{N}^{|\mathcal{X}|}\to\mathbb{R}^k$ is

$$\Delta f \coloneqq \max_{x,y \in \mathbb{N}^{|\mathcal{X}|}, \|x-y\|_1 = 1} \|f(x) - f(y)\|_1.$$

• e.g., x is a dataset and f is a post-processor.

Laplace Mechanism is DP

Theorem

The Laplace mechanism preserves $(\varepsilon, 0)$ -differential privacy.

Laplace Mechanism is DP

Proof Sketch

- Let $x\in \mathbb{N}^{|\mathcal{X}|}$ and $y\in \mathbb{N}^{|\mathcal{X}|}$ be such that $\|x-y\|_1\leq 1$
- p_x : the PDF of $\mathcal{M}_L(x,f,arepsilon)$
- p_y : the PDF of $\mathcal{M}_L(y, f, \varepsilon)$
- For any $z \in \mathbb{R}^k$, we have

$$\frac{p_x(z)}{p_y(z)} = \prod_{i=1}^k \left(\exp\left(-\frac{\varepsilon |f(x)_i - z_i|}{\Delta f}\right) \middle/ \exp\left(-\frac{\varepsilon |f(y)_i - z_i|}{\Delta f}\right) \right)$$
$$= \prod_{i=1}^k \exp\left(\frac{\varepsilon (|f(y)_i - z_i| - |f(x)_i - z_i|)}{\Delta f}\right)$$
$$\leq \prod_{i=1}^k \exp\left(\frac{\varepsilon |f(x)_i - f(y)_i|}{\Delta f}\right)$$
$$= \exp\left(\frac{\varepsilon ||f(x) - f(y)||_1}{\Delta f}\right)$$
$$\leq \exp\left(\varepsilon\right).$$

• $\frac{p_x(z)}{p_y(z)} \ge \exp(-\varepsilon)$ follows by symmetry.

Gaussian Mechanism is DP

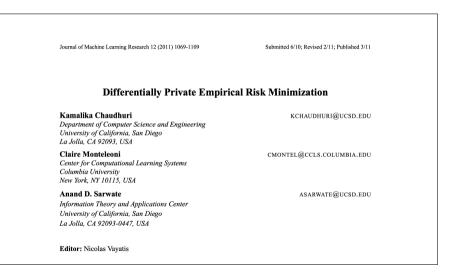
Definition

Let $f: \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^d$ be an arbitrary *d*-dimensional function, and define its ℓ_2 sensitivity to be $\Delta_2 f = \max_{\text{adjacent}x,y} \|f(x) - f(y)\|_2$. The Gaussian Mechanism with parameter σ adds noise scaled to $\mathcal{N}(0, \sigma^2)$ to each of the *d* components of the output.

Theorem

Let $\varepsilon \in (0,1)$ be arbitrary. For $c^2 > 2\ln\left(\frac{1.25}{\delta}\right)$, the Gaussan Mechanism with parameter $\sigma \geq \frac{c\Delta_2 f}{\varepsilon}$ is (ε, δ) -differentially private.

How Can It be Connected to Learning?



Empirical Risk Minimization (ERM) Setup

- \mathcal{X} : an example space
 - Assume that $\|x\|_2 \leq 1$ for $x \in \mathcal{X}$
- $\bullet \ \mathcal{Y}:$ a label space
- $\mathcal{D} \coloneqq \{(x_i, y_i)\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$: a training set
- $f: \mathcal{X} \to \mathcal{Y}$: a predictor
- $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}:$ a loss function
- Regularized empirical risk minimization:

$$J(f, \mathcal{D}) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \Lambda N(f),$$

where N(f) is a regularizer.

Assumptions

Definition

A function H(f) over $f \in \mathbb{R}^d$ is said to be *strictly convex* if for all $\alpha \in (0,1)$, f, and $g \neq f$),

$$H\left(\alpha f + (1-\alpha)g\right) < \alpha H(f) + (1-\alpha)H(g).$$

It is said to be λ -strongly convex if for all $\alpha \in (0,1)$, f, and $g \neq f$),

$$H(\alpha f + (1 - \alpha)g) \le \alpha H(f) + (1 - \alpha)H(g) - \frac{1}{2}\lambda\alpha(1 - \alpha)\|f - g\|_{2}^{2}.$$

- A strictly convex function has a unique minimum.
- $(strongly convex) \Longrightarrow (strictly convex)$
- \bullet The regularizer $N(\cdot)$ and loss $\ell(\cdot, \cdot)$ are differentiable.
 - No ℓ_1 -norm regularizer
 - No hinge loss

Privacy Model

Goal: Produce a classifier which preserves the privacy of individual entities of the training set \mathcal{D} .

Definition (*c*-differential privacy)

An algorithm \mathcal{A} provides ε -differential privacy if for any two data sets \mathcal{D} and \mathcal{D}' that differ in a single entry and for any \mathcal{S}

$$e^{-\varepsilon} \leq \frac{\mathbb{P}\{\mathcal{A}(\mathcal{D}) \in \mathcal{S}\}}{\mathbb{P}\{\mathcal{A}(\mathcal{D}') \in \mathcal{S}\}} \leq e^{\varepsilon}.$$

- $\mathcal{A}(\mathcal{D})$: a randomized algorithm that produces a classifier from a training set \mathcal{D} .
- \mathcal{D}' and \mathcal{D} have n-1 samples (x_i, y_i) in common; the differing sample contains private values.

Is ERM differentially private?

 \bullet Given ${\mathcal D}$ and ${\mathcal D}',$ let

$$f^*_{\mathcal{D}} = \arg\min_f J(f, \mathcal{D}) \quad \text{and} \quad f^*_{\mathcal{D}'} = \arg\min_f J(f, \mathcal{D}')$$

• Letting $\mathcal{S} = \{f^*_{\mathcal{D}}\}$,

$$\mathbb{P}\{f_{\mathcal{D}}^* \in \mathcal{S}\} = 1 \neq \mathbb{P}\{f_{\mathcal{D}'}^* \in \mathcal{S}\} = 0$$

• Not differentially private!

Algorithm 1: Output Perturbation

output perturbation

$$f_{\mathsf{priv}} = \arg\min_{f} J(f, \mathcal{D}) + \mathbf{b}$$

 ${\ensuremath{\, \bullet \,}}$ ${\ensuremath{\, b}}$ is random noise with density

$$v(\mathbf{b}) \propto e^{-\beta \|\mathbf{b}\|}$$

with $\beta = \frac{n\Lambda\varepsilon}{2}$.

Algorithm 2: Objective Perturbation

output perturbation

$$f_{\mathsf{priv}} = rg\min_f J(f, \mathcal{D}) + rac{1}{n} \mathbf{b}^T f$$

 ${\ensuremath{\, \bullet \,}}$ ${\ensuremath{\, b}}$ is random noise with density

$$v(\mathbf{b}) \propto e^{-\beta \|\mathbf{b}\|}$$

with
$$\beta = rac{arepsilon - \log\left(1 + rac{2c}{n\Lambda} + rac{c^2}{n^2\Lambda^2}
ight)}{2}$$
 (assuming $arepsilon$ is chosen to be $\beta > 0$).

Privacy Guarantee

Theorem

If $N(\cdot)$ is differentiable and 1-strongly convex, and ℓ is convex and differentiable with $|\ell'(z)| \leq 1$ for all z, then Algorithm 1 provides ε -differential privacy.

Theorem

If $N(\cdot)$ is doubly differentiable and 1-strongly convex, and ℓ is convex and doubly differentiable with $|\ell'(z)| \leq 1$ and $|\ell''(z)| \leq c$ for all z, then Algorithm 2 provides ε -differential privacy.

- Algorithm 2 requires stronger assumptions.
- What's the benefit of Algorithm 2?

Correctness Guarantee

Lemma

Suppose $N(\cdot)$ is doubly differentiable with $\|\nabla N(f)\|_2 \leq \eta$ for all f, ℓ is differentiable and has continuous c-Lipschitz derivatives. Then, letting f_{priv} be the output of Algorithm 1, we have

$$\mathbb{P}_{\mathbf{b}}\left\{J(f_{\textit{priv}}, \mathcal{D}) \leq J(f^*, \mathcal{D}) + \frac{2d^2\left(\frac{c}{\Lambda} + \eta\right)\log^2\frac{d}{\delta}}{\Lambda n^2\varepsilon^2}\right\} \geq 1 - \delta$$

Lemma

Suppose $N(\cdot)$ is 1-strongly convex and globally differentiable, and ℓ is convex and differentiable with $|\ell'(z)| \leq 1$ for all z. Then, letting f_{priv} be the output of Algorithm 2, we have

$$\mathbb{P}_{\mathbf{b}}\left\{J(f_{\text{priv}}, \mathcal{D}) \leq J(f^*, \mathcal{D}) + \frac{4d^2 \log^2 \frac{d}{\delta}}{\Lambda n^2 \varepsilon^2}\right\} \geq 1 - \delta.$$

- If $\frac{c}{\Lambda} + \eta > 2$, Algorithm 2 is better.
- why not use Algorithm 1 in Certified Removal?

Conclusion

- Differential privacy in learning
 - \blacktriangleright Hide "local" information \rightarrow satisfying the privacy guarantee
 - \blacktriangleright Learn "global" information \rightarrow satisfying the correctness guarantee
- Two goals are conflicting each other.