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Abstract

We study the data. deletion problem for convex models. By leveraging techniques from convex op-
timization and reservoir sampling, we give the first data deletion algorithms that are able to handle an
arbitrarily long sequence of adversarial updates while promising both per-deletion run-time and steady-
state error that do not grow with the length of the update sequence. We also introduce several new
conceptual distinctions: for example, we can ask that after a deletion, the entire state maintained by the
optimization algorithm is statistically indistinguishable from the state that would have resulted had we
retrained, or we can ask for the weaker condition that only the observable output is statistically indis-
tinguishable from the observable output that would have resulted from retraining. We are able to give
more efficient deletion algorithms under this weaker deletion criterion.

o Certified removal [Guo et al., 2020]: Should we retrain a given base model?
@ Algorithmic Learning Theory (2021)

» Convex (again!)

» Add / Delete sequentially
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@ Z: data space

e D C Z: a dataset (precisely, a multi-set)

@ The dataset D can be modified by adding or removing one element from the dataset.
» 7 :={"add", "delete" }: operations
> u=(z,00€ ZxT
» Do wu: an update operation

Doy DuU{z}, ?f o= "add” |
D\ {z}, ifo= “remove

@ ©: model space
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Setup (2/2)
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Setup (2/2)

o A:Z* — O: alearning algorithm
» This produces an initial model.
@ Ra: 2" x(Zx7T)x O — O: an unlearning algorithm

» This produces an update, secrete model.
> |s this enough?

@ foublish : © — ©: a publishing function
» This maps a secrete model 0 to a public model 0 by adding noise
» Why do we need this? Hide an updated sample.

@ Sequential updates

» An update arrives sequentially, i.e., w1, us, ..., u;, ...
» A model is updated sequentially, i.e., 61,05,...,0;,...
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A Goodness Measure: (¢, 0)-Indistinguishability

Definition ((e, )-Indistinguishability)

’5 -
We say random variables X € Q and Y € Q are (g, d)-indistinguishable (and write X = Y) if
for all S C Q,

P{X e S}<eP{YeS}+46 and
P{Y € S} <eP{X € S} + 0.

@ The ultimate goal: having P{X € S} = P{Y € S}
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A Goodness Measure: (¢, 6)-unlearning

Definition ((e, §)-unlearning)

We say that R 4 is an (g, d)-unlearning algorithm for A with respect to a publishing function
Joublish if all datasets Dy, all update step ¢ > 1, and all update sequences U = (ug,us,...),

~ £,0
foublish(Ra(Di—1,ui,0;-1)) = foublish(A(D;)).

@ D, =D; 1 0wu;: The dataset is updated over time.

0 0, = RA(DZ-,l,ui,éZ-,l): the secrete model 6; is updated over time via unlearning.
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Empirical Risk Minimization (ERM)

Main Ingredient of Learning and Unlearning

Additional Setup:

@ O: a convex and closed subset of R4
o f:0 x Z— R: aloss function
> f(a,Z) = fz(e)

> Here, we assume that the loss function is strongly convex (but can be relaxed).

Definition (empirical loss)

fo(6) = 3" £(0)
=1
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Empirical Risk Minimization (ERM)
(a, B)-accuracy
Definition ((«, [3)-accuracy)

We say a pair (A, R 4) of learning and unlearning algorithms is («, 3)-accurate with respect to
a publishing function foupiish if for any dataset D, any update sequence U, and any i > 0,

P < fp,(0;) — min fp, (0 :

{sz( 1) relélélfpz( )>Od}<,8

0 0; = fpubush(RA(Di_l,ui,éi_l)): the public model, released by a publishing function
after learning or unlearning

o Gradient descent can achieve («, )-accuracy.

@ Note that the “accuracy” and “unlearning” are different metrics.
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Empirical Risk Minimization (ERM)

(a, B)-accuracy

Definition ((«, [3)-accuracy)

We say a pair (A, R 4) of learning and unlearning algorithms is («, 3)-accurate with respect to
a publishing function foupiish if for any dataset D, any update sequence U, and any i > 0,

P {f'Dz-(éi) — min fp, () > 04} <B.

0; = fpublish(RA(Di—I,uiyéi—l)): the public model, released by a publishing function
after learning or unlearning

Gradient descent can achieve («, 3)-accuracy.

Note that the “accuracy” and “unlearning” are different metrics.
Trivial?

PAC guarantee?
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Method: Perturbed Gradient Descent

Learning

Algorithm 1 A: Learning for Perturbed Gradient Descent
1: Input: dataset D
2: Initialize 6 € ©
3: fort=1,2,...T do
4.
5

6; = Proje (0,—1 — mVfp(6;_1))
. Output: 6y = 0 > Secret output
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1: Input: dataset D
2: Initialize 6 € ©
3: fort=1,2,...T do
4.
5

6; = Proje (0,—1 — mVfp(6;_1))
. Output: 6y = 0 > Secret output

@ Use gradient descent for learning our initial model By

e 0y can be “accurate” enough if T and 7 are properly chosen as fp is strongly convex
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Method: Perturbed Gradient Descent

Unlearning

Algorithm 2 R 4: ith Unlearning for Perturbed Gradient Descent

S G w N

: Input: dataset D;_1, update u;, model 6;
: Update dataset D; = D;—1 0o u;

: Initialize 96 = 91

: fort=1,2,...T; do

0, = Projg (94—1 —n:Vfp, (92—1))

: Output 0; = 0&1

> Secret output
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Algorithm 2 R 4: ith Unlearning for Perturbed Gradient Descent

1: Input: dataset D;—1, update u;, model 6;

2: Update dataset D; = D;_1 o u;

3: Initialize 96 = 91

4: for t =1,2,...7; do

5: 0; = Proje (0;_1 — n:V fp,(0;_1))

6: Output §; = 0, > Secret output

@ Each i-th unlearning step, a model is updated.
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5
6

0, = Projg (9471 —neVfp, (9271))
. Output §; = 0, > Secret output

@ Each i-th unlearning step, a model is updated.
@ The algorithm is still gradient decent computed over the entire dataset.

» Why not gradient ascent?
> Is it efficient in T;7 Why not the Newton's method?
» What's the difference from retraining?

@ This algorithm can be “accurate” given proper T; and 7.
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Method: Perturbed Gradient Descent
Publishing

Algorithm 3 f,upish: Publishing function

1: Input: 6 € R?
2: Draw Z ~ N (0,0%1,)
3: Output: 6=0+2

> Public output
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Algorithm 3 f,upish: Publishing function
1: Input: 6 € R?
2: Draw Z ~ N (0,0%1,)
3: Output: 0 =6+ Z > Public output

@ Why we have to add noise?

» Hide our model (like DP)
@ How much noise should we add?

> See the theorem statement; but does it hurt the accuracy of the published function?
e What's the main difference from the certified removal paper [Guo et al., 2020]?

» We don't need to retrain our pre-trained model with noise.
> Instead, it publishes a noisy model.
» However, can the published function be accurate enough?
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Guarantee

Theorem (Trade-off between unlearning and accuracy (informal))
Suppose that

(]

the loss function f, is convex and “smooth”,

the learning algorithm A runs with n; and T such that 0y is “accurate”,
the unlearning algorithm R 4 runs with 1L iterations, and

e = 0(log1/$),

the publishing function fuupiish runs with o oc ﬁ

Then, we have

@ R4 is (g,9)-unlearning algorithm for A with respect to fpupiish and
@ Forany f3, (A, RA) is (o, B)-accurate with respect to fpuplisn When o o é
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o the learning algorithm A runs with n; and T' such that 0y is “accurate”,
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Guarantee

Theorem (Trade-off between unlearning and accuracy (informal))
Suppose that

(]

the loss function f, is convex and “smooth”,

the learning algorithm A runs with n; and T such that 0y is “accurate”,
the unlearning algorithm R 4 runs with 1L iterations, and

e = 0(log1/$),

the publishing function fuupiish runs with o oc ﬁ

Then, we have

R4 is (g,06)-unlearning algorithm for A with respect to foupiish and
For any 8, (A, R.A) is (o, B)-accurate with respect to fpuplisn When o o é

(€, 6)-unlearning: (unlearned model) ~ (retrained model) = (no information leak)
(c, B)-accuracy: the unlearned model is “accurate”

We cannot achieve two goals simultaneously, i.e., a < %
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@ Do we retrain our base model?
» No. We can add noise when publish a (secret) model.
@ Does the noise level depend on a sample?
» No. The noise level is data-independent, which can be in practical.
What's the main difference between perturbed GD and DP?
> Not sure. Need some analysis.

Is the “publishing” idea interesting?
» add-nose-then-unlearn v.s. unlearn-then-add-noise

Is the “sequential” setting interesting?
» Looks practical
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