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Unlearning by Theorists

Certified removal [Guo et al., 2020]: Should we retrain a given base model?
Algorithmic Learning Theory (2021)

▶ Convex (again!)
▶ Add / Delete sequentially
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Setup (1/2)

Z: data space

D ⊆ Z: a dataset (precisely, a multi-set)

The dataset D can be modified by adding or removing one element from the dataset.
▶ T := {“add”, “delete”}: operations
▶ u := (z, o) ∈ Z × T
▶ D ◦ u: an update operation

D ◦ u :=

{
D ∪ {z}, if o = “add”

D \ {z}, if o = “remove”

Θ: model space
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Setup (2/2)

A : Z∗ → Θ: a learning algorithm
▶ This produces an initial model.

RA : Z∗ × (Z × T )×Θ → Θ: an unlearning algorithm
▶ This produces an update, secrete model.
▶ Is this enough?

fpublish : Θ → Θ: a publishing function

▶ This maps a secrete model θ̂ to a public model θ̃ by adding noise
▶ Why do we need this? Hide an updated sample.

Sequential updates
▶ An update arrives sequentially, i.e., u1, u2, . . . , ui, . . .
▶ A model is updated sequentially, i.e., θ̂1, θ̂2, . . . , θ̂i, . . .
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A Goodness Measure: (ε, δ)-Indistinguishability

Definition ((ε, δ)-Indistinguishability)

We say random variables X ∈ Ω and Y ∈ Ω are (ε, δ)-indistinguishable (and write X
ε,δ
≈ Y ) if

for all S ⊆ Ω,

P {X ∈ S} ≤ eεP {Y ∈ S}+ δ and

P {Y ∈ S} ≤ eεP {X ∈ S}+ δ.

The ultimate goal: having P {X ∈ S} ≈ P {Y ∈ S}
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A Goodness Measure: (ε, δ)-unlearning

Definition ((ε, δ)-unlearning)

We say that RA is an (ε, δ)-unlearning algorithm for A with respect to a publishing function
fpublish if all datasets D0, all update step i ≥ 1, and all update sequences U = (u1, u2, . . . ),

fpublish(RA(Di−1, ui, θ̂i−1))
ε,δ
≈ fpublish(A(Di)).

Di = Di−1 ◦ ui: The dataset is updated over time.

θ̂i = RA(Di−1, ui, θ̂i−1): the secrete model θ̂i is updated over time via unlearning.
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Empirical Risk Minimization (ERM)
Main Ingredient of Learning and Unlearning

Additional Setup:

Θ: a convex and closed subset of Rd

f : Θ×Z → R: a loss function
▶ f(θ, z) = fz(θ)
▶ Here, we assume that the loss function is strongly convex (but can be relaxed).

Definition (empirical loss)

fD(θ) :=
1

n

n∑
i=1

fzi(θ)
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Empirical Risk Minimization (ERM)
(α, β)-accuracy

Definition ((α, β)-accuracy)

We say a pair (A,RA) of learning and unlearning algorithms is (α, β)-accurate with respect to
a publishing function fpublish if for any dataset D, any update sequence U , and any i ≥ 0,

P

{
fDi(θ̃i)−min

θ∈Θ
fDi(θ) > α

}
< β.

θ̃i = fpublish(RA(Di−1, ui, θ̂i−1)): the public model, released by a publishing function
after learning or unlearning

Gradient descent can achieve (α, β)-accuracy.

Note that the “accuracy” and “unlearning” are different metrics.

Trivial?

PAC guarantee?
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Method: Perturbed Gradient Descent
Learning

Use gradient descent for learning our initial model θ̂0

θ̂0 can be “accurate” enough if T and ηt are properly chosen as fD is strongly convex
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Method: Perturbed Gradient Descent
Unlearning

Each i-th unlearning step, a model is updated.

The algorithm is still gradient decent computed over the entire dataset.
▶ Why not gradient ascent?
▶ Is it efficient in Ti? Why not the Newton’s method?
▶ What’s the difference from retraining?

This algorithm can be “accurate” given proper Ti and ηt.
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Method: Perturbed Gradient Descent
Publishing

Why we have to add noise?
▶ Hide our model (like DP)

How much noise should we add?
▶ See the theorem statement; but does it hurt the accuracy of the published function?

What’s the main difference from the certified removal paper [Guo et al., 2020]?
▶ We don’t need to retrain our pre-trained model with noise.
▶ Instead, it publishes a noisy model.
▶ However, can the published function be accurate enough?
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Guarantee

Theorem (Trade-off between unlearning and accuracy (informal))

Suppose that

the loss function fz is convex and “smooth”,

the learning algorithm A runs with ηt and T such that θ̂0 is “accurate”,

the unlearning algorithm RA runs with I iterations, and

ε = O(log 1/δ),

the publishing function fpublish runs with σ ∝ 1√
ε
.

Then, we have

RA is (ε, δ)-unlearning algorithm for A with respect to fpublish and

For any β, (A,RA) is (α, β)-accurate with respect to fpublish when α ∝ 1
ε .

(ε, δ)-unlearning: (unlearned model) ≈ (retrained model) ⇒ (no information leak)

(α, β)-accuracy: the unlearned model is “accurate”

We cannot achieve two goals simultaneously, i.e., α ∝ 1
ε .
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Discussion

Do we retrain our base model?
▶ No. We can add noise when publish a (secret) model.

Does the noise level depend on a sample?
▶ No. The noise level is data-independent, which can be in practical.

What’s the main difference between perturbed GD and DP?
▶ Not sure. Need some analysis.

Is the “publishing” idea interesting?
▶ add-nose-then-unlearn v.s. unlearn-then-add-noise

Is the “sequential” setting interesting?
▶ Looks practical
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