Trustworthy Machine Learning Certified Adversarial Learning

Sangdon Park

POSTECH

Motivation

• Heuristic adversarial learning often fails against powerful adversaries.

			CIFAR10				
	Simple	Wide	Simple	Wide	Simple	Wide	
Natural	92.7%	95.2%	87.4%	90.3%	79.4%	87.3%	
FGSM	27.5%	32.7%	90.9%	95.1%	51.7%	56.1%	
PGD	0.8%	3.5%	0.0%	0.0%	43.7%	45.8%	
(a) Standard training			(b) FGSM	training	(c) PGD training		

- ▶ FGSM training and FGSM attacks: 90.9% accuracy :)
- ▶ FGSM training and PGD attacks: 0.0% accuracy :(

Motivation

• Heuristic adversarial learning often fails against powerful adversaries.

			CIFAR10				
	Simple	Wide	Simple	Wide	Simple	Wide	
Natural	92.7%	95.2%	87.4%	90.3%	79.4%	87.3%	
FGSM	27.5%	32.7%	90.9%	95.1%	51.7%	56.1%	
PGD	0.8%	3.5%	0.0%	0.0%	43.7%	45.8%	
(a) Standard training			(b) FGSM	training	(c) PGD training		

- ▶ FGSM training and FGSM attacks: 90.9% accuracy :)
- ▶ FGSM training and PGD attacks: 0.0% accuracy :(
- Can we learn a classifier robust to any small perturbations?

Certified Adversarial Learning

• Convex outer approximation [Kolter and Wong, 2017]

✓ Certified!

$$\max_{\|\delta\|_{\infty} \leq \varepsilon} \ell(f, x + \delta, y) \leq U(\varepsilon, f, x, y)$$

X Not scalable :(

Certified Adversarial Learning

• Convex outer approximation [Kolter and Wong, 2017]

✓ Certified!

$$\max_{\|\delta\|_{\infty} \le \varepsilon} \ell(f, x + \delta, y) \le U(\varepsilon, f, x, y)$$

✗ Not scalable :(

• Randomized smoothing: a post-hoc method

Certified Adversarial Robustness via Randomized Smoothing

Jeremy Cohen¹ Elan Rosenfeld¹ J. Zico Kolter¹²

(Probably) Certified! Scalable!

A Goodness Definition: Robustness

$$\max_{\|\delta\|_p \le \varepsilon} f(x+\delta) = f(x)$$

• $f: \mathcal{X} \to \mathcal{Y}$: a classifier

A Goodness Definition: Robustness

$$\max_{\delta \parallel_p \le \varepsilon} f(x+\delta) = f(x)$$

- $f: \mathcal{X} \to \mathcal{Y}$: a classifier
- The constraint on the perturbation δ can be more general.

A Goodness Definition: Robustness

$$\max_{\|\delta\|_p \le \varepsilon} f(x+\delta) = f(x)$$

- $f: \mathcal{X} \to \mathcal{Y}$: a classifier
- The constraint on the perturbation δ can be more general.
- It does not matter whether f(x) is correct.

A Certified Method: Randomized Smoothing

$$g(x) \coloneqq \arg\max_{c \in \mathcal{Y}} \mathbb{P}\left\{f(x+\delta) = c\right\} \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

- $g: \mathcal{X} \to \mathcal{Y}$: a smoothed classifier
- σ is related to the maximum perturbation ε .

Binary Classification

Theorem

Suppose that $\underline{p_A} \in (0.5, 1]$ satisfies

$$\mathbb{P}\left\{f(x+\varepsilon)=c_A\right\}\geq \underline{p_A} \quad \textit{where} \quad \varepsilon\sim \mathcal{N}(0,\sigma^2 I).$$

Then, we have
$$g(x + \delta) = c_A$$
 if

$$\|\delta\|_2 < \sigma \Phi^{-1}(\underline{p_A}).$$

- c_A : the most probable class when f classifies $x + \varepsilon$
- p_A : the chance that f classifies $x + \varepsilon$ by c_A
- $\underline{p_A}$: the lower bound of p_A
- $\Phi^{-1}:$ the inverse of the standard Gaussian CDF

Binary Classification

Theorem

Suppose that $\underline{p_A} \in (0.5, 1]$ satisfies

$$\mathbb{P}\left\{f(x+\varepsilon)=c_A\right\}\geq \underline{p_A} \quad \textit{where} \quad \varepsilon\sim \mathcal{N}(0,\sigma^2 I).$$

Then, we have
$$g(x + \delta) = c_A$$
 if

$$\|\delta\|_2 < \sigma \Phi^{-1}(\underline{p_A}).$$

- c_A : the most probable class when f classifies $x + \varepsilon$
- p_A : the chance that f classifies $x + \varepsilon$ by c_A
- $\underline{p_A}$: the lower bound of p_A
- $\Phi^{-1}:$ the inverse of the standard Gaussian CDF
- Here, we assume that we can compute p_A .

Binary Classification

Theorem

Suppose that $\underline{p_A} \in (0.5, 1]$ satisfies

$$\mathbb{P}\left\{f(x+\varepsilon)=c_A\right\}\geq \underline{p_A} \quad \textit{where} \quad \varepsilon\sim \mathcal{N}(0,\sigma^2 I).$$

Then, we have
$$g(x + \delta) = c_A$$
 if

$$\|\delta\|_2 < \sigma \Phi^{-1}(\underline{p_A}).$$

- c_A : the most probable class when f classifies $x + \varepsilon$
- p_A : the chance that f classifies $x + \varepsilon$ by c_A
- $\underline{p_A}$: the lower bound of p_A
- $\Phi^{-1}:$ the inverse of the standard Gaussian CDF
- Here, we assume that we can compute p_A .
- Due to the Gaussian, we can compute the maximum perturbation to be robust!

Robustness Guarantee: A Proof Sketch (1/3) Binary Classification

• Fix a perturbation δ .

g

• From the definition of g, we have

$$(x + \delta) \coloneqq \arg \max_{c} \mathbb{P} \{ f(x + \varepsilon + \delta) = c \} \quad \text{where} \quad \varepsilon \sim \mathcal{N}(0, \sigma^{2}I)$$
$$= \arg \max_{c} \mathbb{P} \{ f(x + \varepsilon') = c \} \quad \text{where} \quad \varepsilon' \sim \mathcal{N}(\delta, \sigma^{2}I)$$
$$\stackrel{?}{=} c_{A} \tag{1}$$

Robustness Guarantee: A Proof Sketch (1/3) Binary Classification

- Fix a perturbation δ .
- From the definition of g, we have

$$g(x + \delta) \coloneqq \arg \max_{c} \mathbb{P} \{ f(x + \varepsilon + \delta) = c \} \quad \text{where} \quad \varepsilon \sim \mathcal{N}(0, \sigma^{2}I)$$
$$= \arg \max_{c} \mathbb{P} \{ f(x + \varepsilon') = c \} \quad \text{where} \quad \varepsilon' \sim \mathcal{N}(\delta, \sigma^{2}I)$$
$$\stackrel{?}{=} c_{A} \qquad (1)$$

- We wish to prove (1). How?
 - ► *f* can be any classifier, which is not easy to analyze.
 - ▶ Consider a surrogate classifier that bounds the probability and is easier to analyze, e.g.,

$$\mathbb{P}\left\{f(x+\varepsilon')=c_A\right\} \ge \min_{f':\mathbb{P}\left\{f(x+\varepsilon)=c_A\right\}\ge \underline{p_A}} \mathbb{P}\left\{f'(x+\varepsilon')=c_A\right\} > \frac{1}{2} \quad \Longrightarrow \quad g(x+\delta)=c_A.$$

Robustness Guarantee: A Proof Sketch (2/3) Binary Classification

• Interestingly, f^* is linear (due to the Neyman-Perason lemma), where

$$f^* = \arg \min_{f': \mathbb{P}\{f(x+\varepsilon)=c_A\} \ge \underline{p_A}} \mathbb{P}\left\{f'(x+\varepsilon') = c_A\right\}$$

Robustness Guarantee: A Proof Sketch (3/3) Binary Classification

• We have a closed-form solution of f^* :

$$f^*(x') \coloneqq \begin{cases} c_A & \text{ if } \delta^T(x'-x) \le \sigma \|\delta\|_2 \Phi^{-1}(\underline{p}_A) \\ c_B & \text{ otherwise} \end{cases}.$$

• This implies

$$\mathbb{P}\left\{f^*(x+\varepsilon')=c_A\right\}=\Phi\left(\Phi^{-1}(\underline{p_A})-\frac{\|\delta\|_2}{\sigma}\right)$$

• The above probability should be larger than $\frac{1}{2}$, *i.e.*,

$$\Phi\left(\Phi^{-1}(\underline{p_A}) - \frac{\|\delta\|_2}{\sigma}\right) > \frac{1}{2} \quad \Longrightarrow \quad \|\delta\|_2 < \sigma \Phi^{-1}(\underline{p_A}).$$

Multi-class Classification

Theorem

Suppose that $\underline{p}_A, \overline{p}_B \in [0, 1]$ satisfies

$$\mathbb{P}\left\{f(x+\varepsilon)=c_A\right\} \geq \underline{p_A} \geq \overline{p_B} \geq \max_{c \neq c_A} \mathbb{P}\left\{f(x+\varepsilon)=c\right\}.$$

Then, we have $g(x+\delta)=c_A$ for all $\|\delta\|_2\leq R$, where

$$R \coloneqq \frac{\sigma}{2} \left(\Phi^{-1}(\underline{p_A}) - \Phi^{-1}(\overline{p_B}) \right).$$

- c_A : the most probable label (with probability at least p_A)
- c_B := arg max_{c≠c_A} P {f(x + ε) = c}: the second-most probable label (with probability at most p_B)

Prediction

function PREDICT $(f, \sigma, x, n, \alpha)$ counts \leftarrow SAMPLEUNDERNOISE (f, x, n, σ) $\hat{c}_A, \hat{c}_B \leftarrow$ top two indices in counts $n_A, n_B \leftarrow$ counts $[\hat{c}_A]$, counts $[\hat{c}_B]$ if BINOMPVALUE $(n_A, n_A + n_B, 0.5) \leq \alpha$ return \hat{c}_A else return ABSTAIN

• Recall the randomized smoothing method:

$$g(x) \coloneqq \arg \max_{c \in \mathcal{Y}} \mathbb{P}\left\{f(x+\delta) = c\right\} \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

1 Draw *n* noisy perturbations $\delta_1, \ldots, \delta_n$.

2 Empirically compute the most probable and the second most probably labels, *i.e.*, \hat{c}_A and \hat{c}_B .

3 If \hat{c}_A is drawn from the binomial distribution with p = 0.5, return \hat{c}_A .

Certification in Evaluation

certify the robustness of g around x function CERTIFY(f, σ , x, n_0 , n, α) counts0 \leftarrow SAMPLEUNDERNOISE(f, x, n_0 , σ) $\hat{c}_A \leftarrow$ top index in counts0 counts \leftarrow SAMPLEUNDERNOISE(f, x, n, σ) $\underline{p}_A \leftarrow$ LOWERCONFBOUND(counts[\hat{c}_A], n, $1 - \alpha$) if $\underline{p}_A > \frac{1}{2}$ return prediction \hat{c}_A and radius $\sigma \Phi^{-1}(\underline{p}_A)$ else return ABSTAIN

- Compute p_A via the binomial tail bound.
- **2** Compute the robust radius, *i.e.*, $\sigma \Phi^{-1}(p_A)$.
- $\hbox{ o If (a desired radius)} \leq \sigma \Phi^{-1}(\underline{p_A}) \hbox{, then "certified".}$

Results: ImageNet

- Classifier: ResNet-50
- \bullet undefended: a classifier with heuristic adversarial training (using ℓ_2 adversarial attacks)
- perturbation: $\|\delta\|_2 \leq (\text{radius})$

Results: Comparison

- (maybe) on MNIST
- Baseline: deterministic robustness guarantee
- randomized smoothing: high-probability guarantee

Limitation of Randomized Smoothing

• Randomized smoothing requires retraining (e.g., Gaussian data augmentation).

- Cohen et al.: Randomized smoothing with retraining
- No denoiser: Randomized smoothing without retraining
- How to avoid retraining?

Denoise Gaussian Noise

- A classifier randomized smoothing needs to be robust to Gaussian noise for better certified robustness.
- How about denoise Gaussian noise and then use the randomized smoothing?

Denoised Smoothing

Randomized Smoothing:

$$g(x) \coloneqq \arg \max_{c \in \mathcal{Y}} \mathbb{P}\left\{f(x+\delta) = c\right\} \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

• Applicable for any classifier f

Denoised Smoothing:

$$g(x) \coloneqq \arg \max_{c \in \mathcal{Y}} \mathbb{P}\left\{ f(\mathcal{D}(x+\delta)) = c \right\} \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

• $\mathcal{D}: \mathcal{X} \rightarrow \mathcal{X}:$ a denoiser

• Consider a new classifier $f \circ D$ and then enjoy randomized smoothing.

How to Train a Denoiser?

MSE objective:

$$L_{\mathsf{MSE}} \coloneqq \mathop{\mathbb{E}}_{x,y,\delta} \|\mathcal{D}(x+\delta) - x\|_2^2$$

How to Train a Denoiser?

MSE objective:

$$L_{\mathsf{MSE}} \coloneqq \mathop{\mathbb{E}}_{x,y,\delta} \|\mathcal{D}(x+\delta) - x\|_2^2$$

X Does not consider the accuracy of a classifier.

Stability objective:

$$L_{\mathsf{Stab}} \coloneqq \mathop{\mathbb{E}}_{x,y,\delta} \ell(f, \mathcal{D}(x+\delta), f(x)) \quad \text{where} \quad \delta \sim \mathcal{N}(0, \sigma^2 I)$$

Results

• The denoised smoothing without retraining is quite similar to the randomized smoothing with retraining.

Conclusion

- Randomized smoothing provides a simple defense mechanism.
- Desnoised smoothing does not require to retrain a classifier (but still requires training the denoiser).
- Recently, the denoised smoothing was improved via denoising diffusion probabilistic Models [Carlini et al., 2023].

			Certified Accuracy at ε (<i>n</i>)				
Method	Off-the-shelf	Extra data	0.5	1.0	1.5	2.0	3.0
PixelDP (Lecuyer et al., 2019)	0	×	(33.0)16.0	-	-		
RS (Cohen et al., 2019)	0	×	^(67.0) 49.0	^(57.0) 37.0	^(57.0) 29.0	(44.0)19.0	$^{(44.0)}12.0$
SmoothAdv (Salman et al., 2019)	0	×	(65.0) 56.0	$^{(54.0)}43.0$	(54.0)37.0	$^{(40.0)}27.0$	$^{(40.0)}20.0$
Consistency (Jeong & Shin, 2020)	0	×	(55.0) 50.0	^(55.0) 44.0	^(55.0) 34.0	$^{(41.0)}24.0$	$^{(41.0)}17.0$
MACER (Zhai et al., 2020)	0	×	^(68.0) 57.0	(64.0)43.0	(64.0)31.0	$^{(48.0)}25.0$	(48.0)14.0
Boosting (Horváth et al., 2022a)	0	×	^(65.6) 57.0	^(57.0) 44.6	(57.0) 38.4	$^{(44.6)}$ 28.6	(38.6) 21.2
DRT (Yang et al., 2021)	0	×	(52.2)46.8	(55.2)44.4	(49.8) 39.8	(49.8) 30.4	(49.8) 23.4
SmoothMix (Jeong et al., 2021)	0	×	(55.0) 50.0	^(55.0) 43.0	^(55.0) 38.0	$^{(40.0)}26.0$	$^{(40.0)}20.0$
ACES (Horváth et al., 2022b)	0	×	^(63.8) 54.0	^(57.2) 42.2	^(55.6) 35.6	$^{(39.8)}25.6$	(44.0)1 9.8
Denoised (Salman et al., 2020)	0	×	(60.0)33.0	(38.0)14.0	(38.0)6.0	-	-
Lee (Lee, 2021)	•	×	41.0	24.0	11.0	-	-
Ours	•	1	^(82.8) 71.1	(77.1)54.3	(77.1) 38.1	(60.0) 29.5	(60.0) 13.1

Cartified Accuracy at a (%)

Reference I

- N. Carlini, F. Tramer, K. D. Dvijotham, L. Rice, M. Sun, and J. Z. Kolter. (certified!!) adversarial robustness for free!, 2023.
- J. Z. Kolter and E. Wong. Provable defenses against adversarial examples via the convex outer adversarial polytope. *arXiv preprint arXiv:1711.00851*, 2017.