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Motivation

Heuristic adversarial learning often fails against powerful adversaries.

▶ FGSM training and FGSM attacks: 90.9% accuracy :)
▶ FGSM training and PGD attacks: 0.0% accuracy :(

Can we learn a classifier robust to any small perturbations?
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Certified Adversarial Learning

Convex outer approximation [Kolter and Wong, 2017]

✓ Certified!
max

∥δ∥∞≤ε
ℓ(f, x+ δ, y) ≤ U(ε, f, x, y)

✗ Not scalable :(

Randomized smoothing: a post-hoc method

✓ (Probably) Certified!
✓ Scalable!
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A Goodness Definition: Robustness

max
∥δ∥p≤ε

f(x+ δ) = f(x)

f : X → Y: a classifier

The constraint on the perturbation δ can be more general.

It does not matter whether f(x) is correct.
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A Certified Method: Randomized Smoothing

g(x) := argmax
c∈Y

P {f(x+ δ) = c} where δ ∼ N (0, σ2I)

g : X → Y: a smoothed classifier

σ is related to the maximum perturbation ε.
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Robustness Guarantee
Binary Classification

Theorem

Suppose that pA ∈ (0.5, 1] satisfies

P {f(x+ ε) = cA} ≥ pA where ε ∼ N (0, σ2I).

Then, we have g(x+ δ) = cA if
∥δ∥2 < σΦ−1(pA).

cA: the most probable class when f classifies x+ ε

pA: the chance that f classifies x+ ε by cA

pA: the lower bound of pA

Φ−1: the inverse of the standard Gaussian CDF

Here, we assume that we can compute pA.

Due to the Gaussian, we can compute the maximum perturbation to be robust!
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Robustness Guarantee: A Proof Sketch (1/3)
Binary Classification

Fix a perturbation δ.

From the definition of g, we have

g(x+ δ) := argmax
c
P {f(x+ ε+ δ) = c} where ε ∼ N (0, σ2I)

= argmax
c
P
{
f(x+ ε′) = c

}
where ε′ ∼ N (δ, σ2I)

?
= cA (1)

We wish to prove (1). How?
▶ f can be any classifier, which is not easy to analyze.
▶ Consider a surrogate classifier that bounds the probability and is easier to analyze, e.g.,

P {f(x+ ε′) = cA} ≥ min
f ′:P{f(x+ε)=cA}≥pA

P {f ′(x+ ε′) = cA} >
1

2
=⇒ g(x+ δ) = cA.
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Robustness Guarantee: A Proof Sketch (2/3)
Binary Classification

Interestingly, f∗ is linear (due to the Neyman-Perason lemma), where

f∗ = arg min
f ′:P{f(x+ε)=cA}≥pA

P
{
f ′(x+ ε′) = cA

}
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Robustness Guarantee: A Proof Sketch (3/3)
Binary Classification

We have a closed-form solution of f∗:

f∗(x′) :=

{
cA if δT (x′ − x) ≤ σ∥δ∥2Φ−1(pA)

cB otherwise
.

This implies

P
{
f∗(x+ ε′) = cA

}
= Φ

(
Φ−1(pA)−

∥δ∥2
σ

)
The above probability should be larger than 1

2 , i.e.,

Φ

(
Φ−1(pA)−

∥δ∥2
σ

)
>

1

2
=⇒ ∥δ∥2 < σΦ−1(pA).
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Robustness Guarantee
Multi-class Classification

Theorem

Suppose that pA, pB ∈ [0, 1] satisfies

P {f(x+ ε) = cA} ≥ pA ≥ pB ≥ max
c ̸=cA

P {f(x+ ε) = c} .

Then, we have g(x+ δ) = cA for all ∥δ∥2 ≤ R, where

R :=
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
.

cA: the most probable label (with probability at least pA)

cB := argmaxc̸=cA P {f(x+ ε) = c}: the second-most probable label (with probability at
most pB)
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Prediction

Recall the randomized smoothing method:

g(x) := argmax
c∈Y

P {f(x+ δ) = c} where δ ∼ N (0, σ2I)

1 Draw n noisy perturbations δ1, . . . , δn.
2 Empirically compute the most probable and the second most probably labels, i.e., ĉA and ĉB .
3 If ĉA is drawn from the binomial distribution with p = 0.5, return ĉA.
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Certification in Evaluation

1 Compute pA via the binomial tail bound.

2 Compute the robust radius, i.e., σΦ−1(pA).

3 If (a desired radius) ≤ σΦ−1(pA), then “certified”.

12 / 21



Results: ImageNet

Classifier: ResNet-50

undefended: a classifier with heuristic adversarial training (using ℓ2 adversarial attacks)

perturbation: ∥δ∥2 ≤ (radius)
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Results: Comparison

(maybe) on MNIST

Baseline: deterministic robustness guarantee

randomized smoothing: high-probability guarantee
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Limitation of Randomized Smoothing

Randomized smoothing requires retraining (e.g., Gaussian data augmentation).

▶ Cohen et al.: Randomized smoothing with retraining
▶ No denoiser: Randomized smoothing without retraining

How to avoid retraining?
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Denoise Gaussian Noise

A classifier randomized smoothing needs to be robust to Gaussian noise for better
certified robustness.

How about denoise Gaussian noise and then use the randomized smoothing?
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Denoised Smoothing

Randomized Smoothing:

g(x) := argmax
c∈Y

P {f(x+ δ) = c} where δ ∼ N (0, σ2I)

Applicable for any classifier f

Denoised Smoothing:

g(x) := argmax
c∈Y

P {f(D(x+ δ)) = c} where δ ∼ N (0, σ2I)

D : X → X : a denoiser

Consider a new classifier f ◦ D and then enjoy randomized smoothing.
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How to Train a Denoiser?

MSE objective:
LMSE := E

x,y,δ
∥D(x+ δ)− x∥22

✗ Does not consider the accuracy of a classifier.

Stability objective:

LStab := E
x,y,δ

ℓ(f,D(x+ δ), f(x)) where δ ∼ N (0, σ2I)
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Results

The denoised smoothing without retraining is quite similar to the randomized smoothing
with retraining.
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Conclusion

Randomized smoothing provides a simple defense mechanism.

Desnoised smoothing does not require to retrain a classifier (but still requires training the
denoiser).

Recently, the denoised smoothing was improved via denoising diffusion probabilistic
Models [Carlini et al., 2023].
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