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Conformal Prediction

...we are hedging the prediction — we are adding to it a statement about how strongly we believe
it. – Vovk et al., 2005
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Motivation

Conventional prediction:
f : X 7→ Y

Conformal prediction:
C : X 7→ 2Y

Conventional prediction is a “point” prediction.

Conformal prediction is a set-valued prediction.

The set contains “likely-correct” alternative options.
▶ The set size measures “uncertainty”!

Why not confidence prediction? User-friendly?

4 / 29



Motivation

Conventional prediction:
f : X 7→ Y

Conformal prediction:
C : X 7→ 2Y

Conventional prediction is a “point” prediction.

Conformal prediction is a set-valued prediction.

The set contains “likely-correct” alternative options.
▶ The set size measures “uncertainty”!

Why not confidence prediction? User-friendly?

4 / 29



Motivation

Conventional prediction:
f : X 7→ Y

Conformal prediction:
C : X 7→ 2Y

Conventional prediction is a “point” prediction.

Conformal prediction is a set-valued prediction.

The set contains “likely-correct” alternative options.
▶ The set size measures “uncertainty”!

Why not confidence prediction? User-friendly?

4 / 29



Motivation

Conventional prediction:
f : X 7→ Y

Conformal prediction:
C : X 7→ 2Y

Conventional prediction is a “point” prediction.

Conformal prediction is a set-valued prediction.

The set contains “likely-correct” alternative options.
▶ The set size measures “uncertainty”!

Why not confidence prediction? User-friendly?

4 / 29



Motivation

Conventional prediction:
f : X 7→ Y

Conformal prediction:
C : X 7→ 2Y

Conventional prediction is a “point” prediction.

Conformal prediction is a set-valued prediction.

The set contains “likely-correct” alternative options.
▶ The set size measures “uncertainty”!

Why not confidence prediction? User-friendly?

4 / 29



Motivation

Conventional prediction:
f : X 7→ Y

Conformal prediction:
C : X 7→ 2Y

Conventional prediction is a “point” prediction.

Conformal prediction is a set-valued prediction.

The set contains “likely-correct” alternative options.
▶ The set size measures “uncertainty”!

Why not confidence prediction? User-friendly?

4 / 29



Why “Conformal”?
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Conformal (Prediction) Sets

C(x) := {y ∈ Y | f(x, y) ≥ q}

We are using more recent notations based on inductive conformal prediction.
▶ The notations are from Lei et al. [2018], Vovk et al. [2005], Tibshirani et al. [2019], and their

combination.
▶ Note that inductive conformal prediction [Papadopoulos et al., 2002] is an efficient variation

of full conformal prediction [Vovk et al., 2005].

f : X × Y → R: a conformity scoring function
▶ Measures how well (x, y) conforms to a trained model f (via a proper training set)
▶ f(x, y) is a likelihood of x for being y

q: A parameter to be chosen by an algorithm.
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Conformity Scoring Functions I
Conformity scoring functions can be (almost) any model!

classification (e.g., resnet):

f(x, y) := fcls(x, y)

▶ fcls: a classification model
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Conformity Scoring Functions II
Conformity scoring functions can be (almost) any model!

Standard regression (in 1-dimension):

f(x, y) := −|µ(x)− y|

▶ µ: a regressor

8 / 29



Conformity Scoring Functions III
Conformity scoring functions can be (almost) any model!

Probabilistic regression (via a Gaussian model with a diagonal covariance matrix [Nix and
Weigend, 1994]):

f(x, y) := N (y;µ(x), σ2
1:d(x))

▶ d: The dimension of Y.
▶ Implementation: µ(x) = fmu(x) and lnσ2 = fvar(x)

⋆ fmu(x): a neural network
⋆ fvar(x): a neural network
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Back to Conformal Sets

C(x) := {y ∈ Y | f(x, y) ≥ q}

A conformity scoring function f is given.

f is a target to measure uncertainty.

How to choose q?
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Assumption: Exchangeability

Assumption

A sequence of random variables X1, X2, . . . is exchangeable if for any permutation σ, the
following holds:

P {X1, X2, . . . } = P
{
Xσ(1), Xσ(2), . . .

}
.

The i.i.d. assumption implies the exchangeability assumption (why?).
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A Goodness Metric: Coverage Guarantee

P

{
Yn+1 ∈ Ĉ(Xn+1)

}
≥ 1− α

(Xi, Yi) ∈ X × Y for i = 1, . . . , n: a training set

The probability is taken over (Xi, Yi) for i = 1, . . . , n+ 1.

(Xi, Yi) for i = 1, . . . , n+ 1: the exchangeable samples (thus the i.i.d. samples)

Ĉ: A conformal set constructed by the training set

1− α ∈ (0, 1): A desired coverage rate
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Quantile
Quantile of a Distribution

The level β quantile of a distribution F :

Quantile(β;F ) := inf{z | P{Z ≤ z} ≥ β}

F : a distribution over the augmented real line, R ∪ {∞}
Z ∼ F

▶ allows multiple instances of the same element
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Quantile
Quantile of an Empirical Distribution

The level β quatile of an empirical distribution of the values v1:n:

Quantile(β; v1:n) := Quantile

(
β;

1

n

n∑
i=1

δvi

)

v1:n := {v1, . . . , vn}: an unordered multiset

δa: a δ-distribution (i.e., a point mass at a)

Lemma (Tibshirani et al. [2019])

If V1, . . . , Vn+1 are exchangeable random variables, then for any β ∈ (0, 1), we have

P

{
Vn+1 ≤ Quantile(β;V1:n ∪ {∞})

}
≥ β.
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Quantile Lemma: A Proof Sketch I

One fact about quantiles of a discrete distribution F with support points a1, . . . , ak ∈ R:
▶ Denote q := Quantile(β;F )
▶ Reassign the points ai strictly larger than q to arbitrary values also strictly larger than q,

yielding a new distribution F̃
▶ Still we have Quantile(β;F ) = Quantile(β; F̃ )

Thus, we have

Vn+1 > Quantile(β;V1:n ∪ {∞}) ⇐⇒ Vn+1 > Quantile(β;V1:n+1).

This implies

P

{
Vn+1 ≤ Quantile(β;V1:n ∪ {∞})

}
= P

{
Vn+1 ≤ Quantile(β;V1:n+1)

}
=

⌈β(n+ 1)⌉
n+ 1

(1)

≥ β.
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Quantile Lemma: A Proof Sketch II
Why (1)? By exchangeability, we have for any integer k ∈ {1, . . . , n+ 1},

P{Vn+1 ≤ V[k]} =
k

n+ 1
,

where [k] is the k-th smallest value of V1, . . . , Vn+1.
▶ Suppose there is no tie (see Kuchibhotla [2020] for a general proof). We have

P

{
Vn+1 ≤ V[k]

}
= P

{
k∨

i=1

Vn+1 = V[i]

}

=

k∑
i=1

P

{
Vn+1 = V[i]

}
=

k∑
i=1

n!

(n+ 1)!
(2)

=
k

n+ 1
.
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Quantile Lemma: A Proof Sketch III

▶ Why (2)? For each permutation π, due to the exchangeability,

P{V1 ≤ · · · ≤ Vn+1} = P{(V1, . . . , Vn+1) ∈ A}
= P{(Vπ(1), . . . , Vπ(n+1)) ∈ A}
= P{Vπ(1) ≤ · · · ≤ Vπ(n+1)},

where A := {(x1, . . . , xn+1) | x1 ≤ · · · ≤ xn+1}.
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Quantile Algorithm

Given (X1, Y1), . . . , (Xn, Yn),

q̂1−α := Quantile(1− α, V1:n ∪ {∞}),

where Vi := −f(Xi, Yi).
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Coverage Guarantee of the Quantile Algorithm

Theorem (Vovk et al. [2005], Lei et al. [2018])

Assume that (Xi, Yi) for i ∈ {1, . . . , n+ 1} are exchangeable. For any scoring function f and
any α ∈ (0, 1), denote the conformal set by

Ĉ(x) :=
{
y ∈ Y

∣∣∣− f(x, y) ≤ q̂1−α

}
.

Then, we have

P

{
Yn+1 ∈ Ĉ(Xn+1)

}
≥ 1− α,

where the probability is taken over (Xi, Yi).

This is a marginal coverage guarantee.
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Coverage Guarantee of the Quantile Algorithm: A Proof Sketch

Observe that

Yn+1 ∈ Ĉ(Xn+1) ⇐⇒ Vn+1 ≤ Quantile(1− α, V1:n ∪ {∞})

Due to the symmetric construction of scores (using the same scoring function f), for any
permutation π we have

(Z1, . . . , Zn+1)
d
= (Zπ(1), . . . , Zπ(n+1)) ⇐⇒ (V1, . . . , Vn+1)

d
= (Vπ(1), . . . , Vπ(n+1))

where Zi := (Xi, Yi).

As (Z1, . . . , Zn+1) are exchangeable, so are (V1, . . . , Vn+1).

Use the quantile lemma.
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Power of Conformal Prediction

The coverage guarantee is drawn with minimal assumptions.

It does not make assumptions on a distribution except for the exchangeability.

The guarantee holds for any conformity scoring function.
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Size of Conformal Sets

Application-dependent issues
▶ classification: set size
▶ 1-D regression: interval length
▶ multi-dimentional regression: e.g., volume

Larger set: uncertain (e.g., the entire set)

Smaller set: more certain (e.g., a singleton)

We will see some analysis in PAC conformal prediction.
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Interesting Variation: Time-series Forecasting
Conformal Time-series Forecasting [Stankeviciute et al., 2021]

Conformal prediction for independent time-series data
▶ e.g., temperature change for each year
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Conformal Time-series Forecasting I
Problem

Setup:

yt:t′ := (yt, yt+1, . . . , yt′) ∈ Rd × . . .Rd: a time-series of d-dimensional observation
▶ Let d = 1

H: a prediction horizon

ŷt′+1:t′+H : predicted future observations (e.g., the output of a RNN)

Ct+h(y1:t): a prediction interval at time t+ h
▶ Ct+h(y1:t) := [ŷLt+h, ŷ

U
t+h]
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Conformal Time-series Forecasting II
Problem

Desired coverage guarantee:

P

{
∀h ∈ {1, . . . ,H}, yt+h ∈ Ct+h(y1:t)

}
≥ 1− α

The probability is taken over y1:t+H .

1− α: a desired coverage rate

Goal: Find Ct+h for all h ∈ {1, . . . ,H}.
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Conformal Time-series Forecasting
Approach

D := {(y(i)1:T , y
(i)
T+1:T+H)}mi=1: a calibration set

Observe that

P

{
∃h ∈ {1, . . . ,H}, yt+h /∈ Ct+h(y1:t)

}
≤

∑
h∈{1,...,H}

P{yt+h /∈ Ct+h(y1:t)} (3)

≤ α (4)

▶ (3) holds due to the union bound.
▶ (4) holds if P{yt+h /∈ Ct+h(y1:t)} ≤ α

H

Due to the standard conformal prediction, we can find Ct+h such that

P{yt+h /∈ Ct+h(y1:t)} ≤ α

H
.
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Conclusion

Conformal prediction is a powerful tool to construct a prediction set (for measuring
uncertainty) with correctness guarantees.

Conformal prediction has many applications due to its “distribution-free” and
“scoring-function-free” nature.

The original conformal prediction framework can be extended to “conditional” cases
(e.g., PAC conformal prediction).

27 / 29



Reference I

A. K. Kuchibhotla. Exchangeability, conformal prediction, and rank tests. arXiv preprint
arXiv:2005.06095, 2020.

J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman. Distribution-free predictive
inference for regression. Journal of the American Statistical Association, 113(523):
1094–1111, 2018.

D. A. Nix and A. S. Weigend. Estimating the mean and variance of the target probability
distribution. In Proceedings of 1994 ieee international conference on neural networks
(ICNN’94), volume 1, pages 55–60. IEEE, 1994.

H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. Inductive confidence machines
for regression. In European Conference on Machine Learning, pages 345–356. Springer,
2002.

K. Stankeviciute, A. M Alaa, and M. van der Schaar. Conformal time-series forecasting.
Advances in neural information processing systems, 34:6216–6228, 2021.

28 / 29



Reference II

R. J. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas. Conformal prediction under
covariate shift. Advances in Neural Information Processing Systems, 32:2530–2540, 2019.

V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world. Springer
Science & Business Media, 2005.

29 / 29


	References

