# Trustworthy Machine Learning 

Beyond PAC Learning

Sangdon Park

POSTECH
September 19, 2023

## Contents from

CS229T/STAT231: Statistical Learning Theory (Winter 2016)
Percy Liang
Last updated Wed Apr 202016 01:36
These lecture notes will be updated periodically as the course goes on. The Appendix
describes the bosic notation, definitions and theorems. describes the besic notation, definitions, and theorems.

## Contents

1 Overview
1.1 What is this course about? (Lecture 1)
1.2 Asymptotics (Lecture 1)
1.3 Uniform convergenos (Lecture 1)
$\begin{array}{ll}1.4 & \text { Kemel methods (Lecture 1) } \\ 1.5 & \text { Online learning (Lecture 1) }\end{array}$
2 Asymptotics
2.1 $\begin{aligned} & \text { Overview (Lecture 1) Aastion (Lecture } \\ & \text { Gaussian mean estimat }\end{aligned}$
${ }_{2.2}^{2.2}$ Multinomial estimation (Lecture 1)
2.4 Exponential families (Lecture 2)
2.5 Maximum entropy principle (Lexture 2 )
2.6 Method of moments for latent-variable models (Lecture 3)
2.7 Fixed design linear regression (Lecture 3)
2.8 General loss functions and random design (Lecture 4)
2.9 Regularized fixed design linear regression (Lecture 4)
2.10 Summary (I

Uniform convergence
${ }_{3.2}$ Formal setup (Lecture 5)
3.3 Realizable finite hypothesis classes (Lecture 5)
3.4 Generalization bounds vis uniform cocturergence (Lecture 5)
3.5 Concentration inoxualities (Lecture 5)
${ }_{3.7}^{3.6}$ Coninte hypothessis classes (Lecture 6) …....
3.8 Rademacher complexity (Lecture 6)
3.9 Finite hypothesis classes (Lecture 7)
3.10 Shattering coefficient (Lecture 7)

## Foundations of

 Machine Learning scond dition

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar

## Is PAC Learning Okay?

Four Ingredients of Learning:

- Distribution $\mathcal{D}$
- Loss l
- Hypothesis Space $\mathcal{H}$
- A Learning Algorithm $\mathcal{A}$


## Problem?

## Is PAC Learning Okay?

## Four Ingredients of Learning:

- Distribution $\mathcal{D}$
- Loss l
- Hypothesis Space $\mathcal{H}$
- A Learning Algorithm $\mathcal{A}$


## Problem?

The main assumption of PAC learning: $\mathcal{D}$ is separable by some $h^{*} \in \mathcal{H}$.

## $\mathcal{D}$ Is Generally Not Separable

Usually we do not know a set of hypotheses $\mathcal{H}$ that has the true hypothesis $h^{*}$.



- What is the architecture of neural networks that perfectly classifies ImageNet?
- We mainly search for good hypothesis space $\mathcal{F}$ without any assumption on $\mathcal{D}$.


## Contents

(1) Concentration Inequalities
(2) Generalization Bounds via Uniform Convergence

## Contents

(1) Concentration Inequalities
(2) Generalization Bounds via Uniform Convergence

## Why Concentration Inequalities?

- Understanding the expected loss is a key in statistical learning

$$
\min _{f \in \mathcal{F}} \mathbb{E} \ell(x, y, f)
$$

## Why Concentration Inequalities?

- Understanding the expected loss is a key in statistical learning

$$
\min _{f \in \mathcal{F}} \mathbb{E} \ell(x, y, f)
$$

- Concentration inequalities
- A concentration inequality provides a bound around an expected value.


## Why Concentration Inequalities?

- Understanding the expected loss is a key in statistical learning

$$
\min _{f \in \mathcal{F}} \mathbb{E} \ell(x, y, f)
$$

- Concentration inequalities
- A concentration inequality provides a bound around an expected value.
- An Example: Mean estimation
- Let $X_{1}, \ldots, X_{n}$ be i.i.d. real-valued random variables with mean $\mu:=\mathbb{E}\left[X_{1}\right]$
- The empirical mean is defined as

$$
\hat{\mu}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- What is the relation between $\mu$ and $\hat{\mu}_{n}$ ?


## Possible Argument 1

Consistency: Due to the law of large numbers,

$$
\hat{\mu}_{n}-\mu \xrightarrow{P} 0
$$

- $\xrightarrow{P}$ : convergence "in probability"
- If we get more data, $\hat{\mu}_{n}$ reaches to $\mu$


## Possible Argument 1

Consistency: Due to the law of large numbers,

$$
\hat{\mu}_{n}-\mu \xrightarrow{P} 0
$$

- $\xrightarrow{P}$ : convergence "in probability"
- If we get more data, $\hat{\mu}_{n}$ reaches to $\mu$
$X$ Asymptotic guarantee: it does not answer on the required number of samples to reach to the correct answer.


## Possible Argument 2

Asymptotic normality: Assuming $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}$, due to the central limit theorem,

$$
\sqrt{n}\left(\hat{\mu}_{n}-\mu\right) \xrightarrow{D} \mathcal{N}\left(0, \sigma^{2}\right)
$$

- $\xrightarrow{D}$ : convergence "in distribution"
- If we get more data, $\hat{\mu}_{n}$ reaches to $\mu$, where the variance is decreasing at a rate of $1 / n$.


## Possible Argument 2

Asymptotic normality: Assuming $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}$, due to the central limit theorem,

$$
\sqrt{n}\left(\hat{\mu}_{n}-\mu\right) \xrightarrow{D} \mathcal{N}\left(0, \sigma^{2}\right)
$$

- $\xrightarrow{D}$ : convergence "in distribution"
- If we get more data, $\hat{\mu}_{n}$ reaches to $\mu$, where the variance is decreasing at a rate of $1 / n$.
$X$ Asymptotic guarantee: it does not answer on the required number of samples to reach to the correct answer.


## Possible Argument 3

Tail bound: we wish to have a statement as follows:

$$
\mathbb{P}\left\{\left|\hat{\mu}_{n}-\mu\right| \geq \varepsilon\right\} \leq \operatorname{SomeFunctionOf}(n, \varepsilon)=\delta
$$

- $\varepsilon$ : a desired error level
- $1-\delta$ : the confidence of the error statement


## Possible Argument 3

Tail bound: we wish to have a statement as follows:

$$
\mathbb{P}\left\{\left|\hat{\mu}_{n}-\mu\right| \geq \varepsilon\right\} \leq \operatorname{SomeFunctionOf}(n, \varepsilon)=\delta
$$

- $\varepsilon$ : a desired error level
- $1-\delta$ : the confidence of the error statement
$\checkmark$ "SomeFunctionOf $(n, \varepsilon)=\delta$ " provides the required number of samples to reach a desired level of error with a desired level of confidence.


## Hoeffding's Inequality

## Theorem

Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \in\left[a_{i}, b_{i}\right]$ for all $i \in\{1, \ldots, n\}$. Then, for any $\varepsilon>0$, the following inequality holds for $S_{n}:=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{P}\left\{\mathbb{E}\left\{S_{n}\right\}-S_{n} \geq \varepsilon\right\} \leq \exp \left\{\frac{-2 \varepsilon^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right\}
$$

## Hoeffding's Inequality

## Theorem

Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \in\left[a_{i}, b_{i}\right]$ for all $i \in\{1, \ldots, n\}$. Then, for any $\varepsilon>0$, the following inequality holds for $S_{n}:=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{P}\left\{\mathbb{E}\left\{S_{n}\right\}-S_{n} \geq \varepsilon\right\} \leq \exp \left\{\frac{-2 \varepsilon^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right\}
$$

- Why is it called a tail bound?


## Hoeffding's Inequality

## Theorem

Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \in\left[a_{i}, b_{i}\right]$ for all $i \in\{1, \ldots, n\}$. Then, for any $\varepsilon>0$, the following inequality holds for $S_{n}:=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{P}\left\{\mathbb{E}\left\{S_{n}\right\}-S_{n} \geq \varepsilon\right\} \leq \exp \left\{\frac{-2 \varepsilon^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right\}
$$

- Why is it called a tail bound?
- What's the effect of $n$ ? Suppose $a_{i}=0$ and $b_{i}=1$,

$$
\mathbb{P}\left\{\mathbb{E}\left\{\frac{S_{n}}{n}\right\}-\frac{S_{n}}{n} \geq \varepsilon^{\prime}\right\} \leq \exp \left\{-2 n \varepsilon^{\prime 2}\right\}
$$

## Hoeffding's Inequality

## Theorem

Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \in\left[a_{i}, b_{i}\right]$ for all $i \in\{1, \ldots, n\}$. Then, for any $\varepsilon>0$, the following inequality holds for $S_{n}:=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{P}\left\{\mathbb{E}\left\{S_{n}\right\}-S_{n} \geq \varepsilon\right\} \leq \exp \left\{\frac{-2 \varepsilon^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right\}
$$

- Why is it called a tail bound?
- What's the effect of $n$ ? Suppose $a_{i}=0$ and $b_{i}=1$,

$$
\mathbb{P}\left\{\mathbb{E}\left\{\frac{S_{n}}{n}\right\}-\frac{S_{n}}{n} \geq \varepsilon^{\prime}\right\} \leq \exp \left\{-2 n \varepsilon^{\prime 2}\right\}
$$

- $X_{1}, \ldots, X_{n}$ need not to follow the same distribution


## Binomial Distribution Tail Bound

A special version of the Hoeffding's inequality.

## Theorem

Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \in\{0,1\}$ and $\mathbb{P}\left\{X_{i}=1\right\}=p \in[0,1]$ for all $i \in\{1, \ldots, n\}$. Then, for any $\varepsilon>0$, the following inequality holds for $S_{n}=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{P}\{p \leq \hat{p}\} \geq 1-\delta
$$

where $F(k ; n, p)$ is the CDF of a binomial distribution with $n$ trials and success probability $p$ and $\hat{p}:=\inf \left\{p^{\prime} \in[0,1] \mid F\left(S_{n} ; n, p^{\prime}\right) \leq \delta\right\}$.

## Binomial Distribution Tail Bound

A special version of the Hoeffding's inequality.

## Theorem

Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \in\{0,1\}$ and $\mathbb{P}\left\{X_{i}=1\right\}=p \in[0,1]$ for all $i \in\{1, \ldots, n\}$. Then, for any $\varepsilon>0$, the following inequality holds for $S_{n}=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{P}\{p \leq \hat{p}\} \geq 1-\delta
$$

where $F(k ; n, p)$ is the CDF of a binomial distribution with $n$ trials and success probability $p$ and $\hat{p}:=\inf \left\{p^{\prime} \in[0,1] \mid F\left(S_{n} ; n, p^{\prime}\right) \leq \delta\right\}$.

- This is from the Clopper-Pearson interval for estimating binomial confidence intervals.


## Binomial Distribution Tail Bound

A special version of the Hoeffding's inequality.

## Theorem

Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \in\{0,1\}$ and $\mathbb{P}\left\{X_{i}=1\right\}=p \in[0,1]$ for all $i \in\{1, \ldots, n\}$. Then, for any $\varepsilon>0$, the following inequality holds for $S_{n}=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{P}\{p \leq \hat{p}\} \geq 1-\delta
$$

where $F(k ; n, p)$ is the CDF of a binomial distribution with $n$ trials and success probability $p$ and $\hat{p}:=\inf \left\{p^{\prime} \in[0,1] \mid F\left(S_{n} ; n, p^{\prime}\right) \leq \delta\right\}$.

- This is from the Clopper-Pearson interval for estimating binomial confidence intervals.
- $\hat{p}$ is the "smallest" value that fails to "describe" our observation $S_{n}$.


## Binomial Distribution Tail Bound

A special version of the Hoeffding's inequality.

## Theorem

Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \in\{0,1\}$ and $\mathbb{P}\left\{X_{i}=1\right\}=p \in[0,1]$ for all $i \in\{1, \ldots, n\}$. Then, for any $\varepsilon>0$, the following inequality holds for $S_{n}=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{P}\{p \leq \hat{p}\} \geq 1-\delta
$$

where $F(k ; n, p)$ is the CDF of a binomial distribution with $n$ trials and success probability $p$ and $\hat{p}:=\inf \left\{p^{\prime} \in[0,1] \mid F\left(S_{n} ; n, p^{\prime}\right) \leq \delta\right\}$.

- This is from the Clopper-Pearson interval for estimating binomial confidence intervals.
- $\hat{p}$ is the "smallest" value that fails to "describe" our observation $S_{n}$.
- From the Hoeffding's inequality, $\mathbb{P}\left\{\frac{S_{n}}{n}-p>\varepsilon\right\} \leq \exp \left\{-2 n \varepsilon^{2}\right\}$


## Binomial Distribution Tail Bound

A special version of the Hoeffding's inequality.

## Theorem

Let $X_{1}, \ldots, X_{n}$ be independent random variables with $X_{i} \in\{0,1\}$ and $\mathbb{P}\left\{X_{i}=1\right\}=p \in[0,1]$ for all $i \in\{1, \ldots, n\}$. Then, for any $\varepsilon>0$, the following inequality holds for $S_{n}=\sum_{i=1}^{n} X_{i}$ :

$$
\mathbb{P}\{p \leq \hat{p}\} \geq 1-\delta
$$

where $F(k ; n, p)$ is the CDF of a binomial distribution with $n$ trials and success probability $p$ and $\hat{p}:=\inf \left\{p^{\prime} \in[0,1] \mid F\left(S_{n} ; n, p^{\prime}\right) \leq \delta\right\}$.

- This is from the Clopper-Pearson interval for estimating binomial confidence intervals.
- $\hat{p}$ is the "smallest" value that fails to "describe" our observation $S_{n}$.
- From the Hoeffding's inequality, $\mathbb{P}\left\{\frac{S_{n}}{n}-p>\varepsilon\right\} \leq \exp \left\{-2 n \varepsilon^{2}\right\}$
- A tighter bound than the Hoeffding's inequality.


## McDiarmid's Inequality

A generalized version of the Heoffding's inequality.

## Theorem

Let $\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{X}^{n}$ be a list of $n \geq 1$ independent random variables and assume that there exist $c_{1}, \ldots, c_{n}>0$ such that $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ satisfies the following conditions:

$$
\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{m}\right)\right| \leq c_{i}
$$

for all $i \in\{1, \ldots, n\}$ and any $x_{1}, \ldots, x_{n}, x_{i} \in \mathcal{X}$. Let $f(S)$ denote $f\left(X_{1}, \ldots, X_{n}\right)$, then, for all $\varepsilon>0$, the following inequality holds:

$$
\mathbb{P}\{f(S)-\mathbb{E}\{f(S)\} \geq \varepsilon\} \leq \exp \left\{\frac{-2 \varepsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right\}
$$

## McDiarmid's Inequality

A generalized version of the Heoffding's inequality.

## Theorem

Let $\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{X}^{n}$ be a list of $n \geq 1$ independent random variables and assume that there exist $c_{1}, \ldots, c_{n}>0$ such that $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ satisfies the following conditions:

$$
\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{m}\right)\right| \leq c_{i},
$$

for all $i \in\{1, \ldots, n\}$ and any $x_{1}, \ldots, x_{n}, x_{i} \in \mathcal{X}$. Let $f(S)$ denote $f\left(X_{1}, \ldots, X_{n}\right)$, then, for all $\varepsilon>0$, the following inequality holds:

$$
\mathbb{P}\{f(S)-\mathbb{E}\{f(S)\} \geq \varepsilon\} \leq \exp \left\{\frac{-2 \varepsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right\} .
$$

- Useful concentration inequality for a more complex function than a mean value under the "bounded difference".


## McDiarmid's Inequality

A generalized version of the Heoffding's inequality.

## Theorem

Let $\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{X}^{n}$ be a list of $n \geq 1$ independent random variables and assume that there exist $c_{1}, \ldots, c_{n}>0$ such that $f: \mathcal{X}^{n} \rightarrow \mathbb{R}$ satisfies the following conditions:

$$
\left|f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{m}\right)\right| \leq c_{i}
$$

for all $i \in\{1, \ldots, n\}$ and any $x_{1}, \ldots, x_{n}, x_{i} \in \mathcal{X}$. Let $f(S)$ denote $f\left(X_{1}, \ldots, X_{n}\right)$, then, for all $\varepsilon>0$, the following inequality holds:

$$
\mathbb{P}\{f(S)-\mathbb{E}\{f(S)\} \geq \varepsilon\} \leq \exp \left\{\frac{-2 \varepsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right\}
$$

- Useful concentration inequality for a more complex function than a mean value under the "bounded difference".
- The main concentration inequality for a generalization bound.


## Contents

## (1) Concentration Inequalities

(2) Generalization Bounds via Uniform Convergence

## Agnostic PAC Learning Algorithm

(c) 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands

## Toward Efficient Agnostic Learning

MICHAEL J. KEARNS
mkearns@research.att.com
ROBERT E. SCHAPIRE
schapire@research.att.com
AT\&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974-0636
LINDA M. SELLIE
sellie@research.att.com
Department of Computer Science, University of Chicago, Chicago, IL 60637
Editor: Lisa Hellerstein
Abstract. In this paper we initiate an investigation of generalizations of the Probably Approximately Correct (PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal in this direction is informally termed agnostic learning, in which we make virtually no assumptions on the that Nature (as represented by the target function) has a simple or succinct explanation. We give a number of positive and negative results that provide an initial outline of the possibilities for agnostic learning. Our results include hardness results for the most obvious generalization of the PAC model to an agnostic sctting, an efficient and general agnostic learning method based on dynamic programming, relationships between loss functions for agnostic learning, and an algorithm for a learning problem that involves hidden variables.

Keywords: machine learning, agnostic learning, PAC learning, computational learning theory

- For the smooth transition from PAC learning, I will introduce agnostic PAC learning.
- Later, we will mainly use languages from statistical learning theory.


## Agnostic PAC Learning Algorithm

## Definition (simplified definition)

An algorithm $\mathcal{A}$ is an agnostic PAC-learning algorithm for $\mathcal{H}$ if for any $\varepsilon>0, \delta>0, h^{*} \in \mathcal{H}$, and $\mathcal{D}$ separable by $h^{*}$, and for some minimum sample size $n^{\prime}$ (which depends on $\varepsilon, \delta, \mathcal{D}$ ), the following holds with any sample size $n \geq n^{\prime}$ :

$$
\mathbb{P}\left\{L(\mathcal{A}(\mathcal{S}))-\min _{h \in \mathcal{H}} L(h) \leq \varepsilon\right\} \geq 1-\delta,
$$

where $\mathcal{S}:=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \sim \mathcal{D}^{n}$.

## Agnostic PAC Learning Algorithm

## Definition (simplified definition)

An algorithm $\mathcal{A}$ is an agnostic PAC-learning algorithm for $\mathcal{H}$ if for any $\varepsilon>0, \delta>0, h^{*} \in \mathcal{H}$, and $\mathcal{D}$ separable by $h^{*}$, and for some minimum sample size $n^{\prime}$ (which depends on $\varepsilon, \delta, \mathcal{D}$ ), the following holds with any sample size $n \geq n^{\prime}$ :

$$
\mathbb{P}\left\{L(\mathcal{A}(\mathcal{S}))-\min _{h \in \mathcal{H}} L(h) \leq \varepsilon\right\} \geq 1-\delta,
$$

where $\mathcal{S}:=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \sim \mathcal{D}^{n}$.

- $\arg \min _{h \in \mathcal{H}} L(h)$ : the best hypothesis


## Agnostic PAC Learning Algorithm

## Definition (simplified definition)

An algorithm $\mathcal{A}$ is an agnostic PAC-learning algorithm for $\mathcal{H}$ if for any $\varepsilon>0, \delta>0, h^{*} \in \mathcal{H}$, and $\mathcal{D}$ separable by $h^{*}$, and for some minimum sample size $n^{\prime}$ (which depends on $\varepsilon, \delta, \mathcal{D}$ ), the following holds with any sample size $n \geq n^{\prime}$ :

$$
\mathbb{P}\left\{L(\mathcal{A}(\mathcal{S}))-\min _{h \in \mathcal{H}} L(h) \leq \varepsilon\right\} \geq 1-\delta,
$$

where $\mathcal{S}:=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \sim \mathcal{D}^{n}$.

- $\arg \min _{h \in \mathcal{H}} L(h)$ : the best hypothesis
- Vapnik notations on generalization bounds are more widely used.


## Agnostic PAC Learning Algorithm

## Definition (simplified definition)

An algorithm $\mathcal{A}$ is an agnostic PAC-learning algorithm for $\mathcal{H}$ if for any $\varepsilon>0, \delta>0, h^{*} \in \mathcal{H}$, and $\mathcal{D}$ separable by $h^{*}$, and for some minimum sample size $n^{\prime}$ (which depends on $\varepsilon, \delta, \mathcal{D}$ ), the following holds with any sample size $n \geq n^{\prime}$ :

$$
\mathbb{P}\left\{L(\mathcal{A}(\mathcal{S}))-\min _{h \in \mathcal{H}} L(h) \leq \varepsilon\right\} \geq 1-\delta,
$$

where $\mathcal{S}:=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \sim \mathcal{D}^{n}$.

- $\arg \min _{h \in \mathcal{H}} L(h)$ : the best hypothesis
- Vapnik notations on generalization bounds are more widely used.
- Please check out the original agnostic PAC learning definition.


## Definitions

Definition (best hypothesis)

$$
h^{*}:=\arg \min _{h \in \mathcal{H}} L(h)
$$

Definition (empirical risk minimizer)

$$
\hat{h}:=\arg \min _{h \in \mathcal{H}} \hat{L}(h)
$$

## Goal: Find Generalization Bounds

## An Interesting Quantity:

$$
L(h)-\hat{L}(h)
$$

## Goal: Find Generalization Bounds

## An Interesting Quantity:

$$
L(h)-\hat{L}(h)
$$

- Why?


## Goal: Find Generalization Bounds

## An Interesting Quantity:

$$
L(h)-\hat{L}(h)
$$

- Why?
- Generally the bound of the following is called a "generalization bound":

$$
L(\hat{h})-L\left(h^{*}\right)
$$

## Goal: Find Generalization Bounds

## An Interesting Quantity:

$$
L(h)-\hat{L}(h)
$$

- Why?
- Generally the bound of the following is called a "generalization bound":

$$
L(\hat{h})-L\left(h^{*}\right)
$$

- It is bounded as follows:

$$
\mathbb{P}\left\{L(\hat{h})-L\left(h^{*}\right) \geq \varepsilon\right\} \leq \mathbb{P}\left\{\sup _{h \in \mathcal{H}}|L(h)-\hat{L}(h)| \geq \frac{\varepsilon}{2}\right\}
$$

## Goal: Find Generalization Bounds

## An Interesting Quantity:

$$
L(h)-\hat{L}(h)
$$

- Why?
- Generally the bound of the following is called a "generalization bound":

$$
L(\hat{h})-L\left(h^{*}\right)
$$

- It is bounded as follows:

$$
\mathbb{P}\left\{L(\hat{h})-L\left(h^{*}\right) \geq \varepsilon\right\} \leq \mathbb{P}\left\{\sup _{h \in \mathcal{H}}|L(h)-\hat{L}(h)| \geq \frac{\varepsilon}{2}\right\}
$$

- We also call a bound of $L(h)-\hat{L}(h)$ a generalization bound - The term "generalization bound" is used in multiple ways.


## Goal: Find Generalization Bounds

## An Interesting Quantity:

$$
L(h)-\hat{L}(h)
$$

- Why?
- Generally the bound of the following is called a "generalization bound":

$$
L(\hat{h})-L\left(h^{*}\right)
$$

- It is bounded as follows:

$$
\mathbb{P}\left\{L(\hat{h})-L\left(h^{*}\right) \geq \varepsilon\right\} \leq \mathbb{P}\left\{\sup _{h \in \mathcal{H}}|L(h)-\hat{L}(h)| \geq \frac{\varepsilon}{2}\right\}
$$

- We also call a bound of $L(h)-\hat{L}(h)$ a generalization bound - The term "generalization bound" is used in multiple ways.
- I'll introduce the philosophy on "From Theory to Algorithm", where $L(h)-\hat{L}(h)$ is more directly related.


## Goal: Find Generalization Bounds

## An Interesting Quantity:

$$
L(h)-\hat{L}(h)
$$

- Why?
- Generally the bound of the following is called a "generalization bound":

$$
L(\hat{h})-L\left(h^{*}\right)
$$

- It is bounded as follows:

$$
\mathbb{P}\left\{L(\hat{h})-L\left(h^{*}\right) \geq \varepsilon\right\} \leq \mathbb{P}\left\{\sup _{h \in \mathcal{H}}|L(h)-\hat{L}(h)| \geq \frac{\varepsilon}{2}\right\}
$$

- We also call a bound of $L(h)-\hat{L}(h)$ a generalization bound - The term "generalization bound" is used in multiple ways.
- I'll introduce the philosophy on "From Theory to Algorithm", where $L(h)-\hat{L}(h)$ is more directly related.
- The generalization bound will depend on the complexity of $\mathcal{H}$, which is harder to measure if $\mathcal{H}$ is an infinite set (than the finite case).


## Example: A Learning Bound for a Finite Hypothesis Set I

## Setup:

- $\mathcal{H}$ : a finite set of functions mapping from $\mathcal{X}$ to $\mathcal{Y}$
- $\mathcal{D}$ : any distribution - no assumption!
- $\mathcal{S}$ : labeled examples
- $\mathcal{A}$ : any algorithm - no assumption to use!


## Example: A Learning Bound for a Finite Hypothesis Set II

## Theorem

Let $\ell(\cdot) \in[0,1]$. For any $\varepsilon>0, \delta>0$, and $\mathcal{D}$, we have

$$
\forall h \in \mathcal{H}, \quad L(h) \leq \hat{L}(h)+\sqrt{\frac{\ln |\mathcal{H}|+\ln \frac{1}{\delta}}{2 n}}
$$

with probability at least $1-\delta$.

- We have logarithmic dependence on $|\mathcal{H}|$ and $1 / \delta$ - this bound is not "sensitive" to them.
- This is a uniform convergence bound: " $\forall h$ " is inside of the probability.

$$
\text { (x) } \quad \forall h \in \mathcal{H}, \quad \mathbb{P}\left\{L(h) \leq \hat{L}(h)+\sqrt{\frac{\ln |\mathcal{H}|+\ln \frac{1}{\delta}}{2 n}}\right\} \geq 1-\delta
$$

- Conservative (=data-independent): even though some $h$ is "bad", we need the convergence guarantee.


## Example: A Learning Bound for a Finite Hypothesis Set III

## Proof Sketch:

$$
\begin{align*}
\mathbb{P}\{\exists h \in \mathcal{H}, L(h)-\hat{L}(h)>\varepsilon\} & =\mathbb{P}\left\{\bigvee_{h \in \mathcal{H}} L(h)-\hat{L}(h)>\varepsilon\right\} \\
& \leq \sum_{h \in \mathcal{H}} \mathbb{P}\{L(h)-\hat{L}(h)>\varepsilon\}  \tag{1}\\
& \leq|\mathcal{H}| \exp \left\{-2 n \varepsilon^{2}\right\} \tag{2}
\end{align*}
$$

- (1): Uniform convergence via the union bound
- (2): A "point" convergence via the Hoeffding's inequality


## From the Previous Learning Bound to an Algorithm

## Learning bound:

$$
\forall h \in \mathcal{H}, \quad L(h) \leq \hat{L}(h)+\sqrt{\frac{\ln |\mathcal{H}|+\ln \frac{1}{\delta}}{2 n}}
$$

- This bound holds for any $h$, including $\mathcal{A}(\mathcal{S})$ for any $\mathcal{A}$.
- If $\mathcal{A}$ minimizes the upper bound, $\mathcal{A}(\mathcal{S})$ minimizes the expected error.
- One such algorithm is the empirical risk minimizer!

Algorithm: Given $\mathcal{H}$ and labeled examples $\mathcal{S}$,

$$
\min _{h \in \mathcal{H}} \hat{L}(h)
$$

- As the learning bound holds for any $h$, our algorithm can be more general, e.g., a regularized ERM.
- For this distribution-free setup, the sample complexity is not very meaningful.


## ERM is Agnostic-PAC

## Example: Under Finite Hypotheses

## Why?

$$
\begin{aligned}
L(\mathcal{A}(\mathcal{S}))-L\left(h^{*}\right) & =\{L(\mathcal{A}(\mathcal{S}))-\hat{L}(\mathcal{A}(\mathcal{S}))\}+\left\{\hat{L}(\mathcal{A}(\mathcal{S}))-\hat{L}\left(h^{*}\right)\right\}+\left\{\hat{L}\left(h^{*}\right)-L\left(h^{*}\right)\right\} \\
& \leq \underbrace{\{L(\mathcal{A}(\mathcal{S}))-\hat{L}(\mathcal{A}(\mathcal{S}))\}}_{\text {uniform convergence }}+\underbrace{\left\{\hat{L}\left(h^{*}\right)-L\left(h^{*}\right)\right\}}_{\text {concentration inequality }} \\
& \leq \sqrt{\frac{\ln |\mathcal{H}|+\ln \frac{1}{\delta_{1}}}{2 n}}+\sqrt{\frac{\ln \frac{1}{\delta_{2}}}{2 n}}
\end{aligned}
$$

with probability at least $1-\left(\delta_{1}+\delta_{2}\right)$.

## Separable $\mathcal{D}$ v.s. $\mathcal{D}$

A bound under the separability assumption

$$
L(\mathcal{A}(\mathcal{S})) \leq \frac{1}{n}\left(\log |\mathcal{H}|+\log \frac{1}{\delta}\right)
$$

A bound without separability

$$
\forall h \in \mathcal{H}, \quad L(h) \leq \hat{L}(h)+\sqrt{\frac{\log |\mathcal{H}|+\log \frac{1}{\delta}}{2 n}}
$$

## Separable $\mathcal{D}$ v.s. $\mathcal{D}$

## A bound under the separability assumption

$$
L(\mathcal{A}(\mathcal{S})) \leq \frac{1}{n}\left(\log |\mathcal{H}|+\log \frac{1}{\delta}\right)
$$

## A bound without separability

$$
\forall h \in \mathcal{H}, \quad L(h) \leq \hat{L}(h)+\sqrt{\frac{\log |\mathcal{H}|+\log \frac{1}{\delta}}{2 n}}
$$

- A bound that exploits more information is tighter.
- A distribution is separable ( $\approx$ no noise).
- The expected error is the parameter of a Bernoulli distribution.


## Separable $\mathcal{D}$ v.s. $\mathcal{D}$

## A bound under the separability assumption

$$
L(\mathcal{A}(\mathcal{S})) \leq \frac{1}{n}\left(\log |\mathcal{H}|+\log \frac{1}{\delta}\right)
$$

## A bound without separability

$$
\forall h \in \mathcal{H}, \quad L(h) \leq \hat{L}(h)+\sqrt{\frac{\log |\mathcal{H}|+\log \frac{1}{\delta}}{2 n}}
$$

- A bound that exploits more information is tighter.
- A distribution is separable ( $\approx$ no noise).
- The expected error is the parameter of a Bernoulli distribution.
- Under the additional information, we can learn faster (i.e., $\frac{1}{n}$ vs $\frac{1}{\sqrt{n}}$ ).


## A More General Bound

- In general, $\mathcal{H}$ is infinite (e.g., a set of neural networks)


## A More General Bound

- In general, $\mathcal{H}$ is infinite (e.g., a set of neural networks)
- The related bound is one of the key results of statistical learning theory (via Vapnik)


## A More General Bound

- In general, $\mathcal{H}$ is infinite (e.g., a set of neural networks)
- The related bound is one of the key results of statistical learning theory (via Vapnik)
- Related keywords include
- McDiarmid's Inequality
- Rademacher Complexity
- VC dimension
- A learning bound for SVM


## A More General Bound

- In general, $\mathcal{H}$ is infinite (e.g., a set of neural networks)
- The related bound is one of the key results of statistical learning theory (via Vapnik)
- Related keywords include
- McDiarmid's Inequality
- Rademacher Complexity
- VC dimension
- A learning bound for SVM
- Caution: this "data-independent" bound cannot not explain the learnability of deep networks!


## Rademacher Complexity

A way to measure the complexity of $\mathcal{H}$ (when $\mathcal{H}$ is infinite)!

## Rademacher Complexity

A way to measure the complexity of $\mathcal{H}$ (when $\mathcal{H}$ is infinite)!

## Definition

Let $\mathcal{F}$ be a set of real-valued functions $f: \mathcal{Z} \rightarrow \mathbb{R}($ e.g., $\mathcal{Z}:=\mathcal{X} \times \mathcal{Y})$. The Rademacher complexity of $\mathcal{F}$ is

$$
R_{n}(\mathcal{F}):=\mathbb{E}\left\{\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(Z_{i}\right)\right\}
$$

where $Z_{1}, \ldots, Z_{n}$ are drawn i.i.d. from a distribution and $\sigma_{1}, \ldots, \sigma_{n}$ are drawn i.i.d. from the uniform distribution over $\{-1,+1\}$ (a.k.a. Rademacher variables).

## Rademacher Complexity

A way to measure the complexity of $\mathcal{H}$ (when $\mathcal{H}$ is infinite)!

## Definition

Let $\mathcal{F}$ be a set of real-valued functions $f: \mathcal{Z} \rightarrow \mathbb{R}($ e.g., $\mathcal{Z}:=\mathcal{X} \times \mathcal{Y})$. The Rademacher complexity of $\mathcal{F}$ is

$$
R_{n}(\mathcal{F}):=\mathbb{E}\left\{\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(Z_{i}\right)\right\}
$$

where $Z_{1}, \ldots, Z_{n}$ are drawn i.i.d. from a distribution and $\sigma_{1}, \ldots, \sigma_{n}$ are drawn i.i.d. from the uniform distribution over $\{-1,+1\}$ (a.k.a. Rademacher variables).

- Previously, "concentration inequalities" + "union bound provides" a generalization bound.


## Rademacher Complexity

A way to measure the complexity of $\mathcal{H}$ (when $\mathcal{H}$ is infinite)!

## Definition

Let $\mathcal{F}$ be a set of real-valued functions $f: \mathcal{Z} \rightarrow \mathbb{R}($ e.g., $\mathcal{Z}:=\mathcal{X} \times \mathcal{Y})$. The Rademacher complexity of $\mathcal{F}$ is

$$
R_{n}(\mathcal{F}):=\mathbb{E}\left\{\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(Z_{i}\right)\right\}
$$

where $Z_{1}, \ldots, Z_{n}$ are drawn i.i.d. from a distribution and $\sigma_{1}, \ldots, \sigma_{n}$ are drawn i.i.d. from the uniform distribution over $\{-1,+1\}$ (a.k.a. Rademacher variables).

- Previously, "concentration inequalities" + "union bound provides" a generalization bound.
- This term will be upper-bounded by a term with "VC dimension" later.


## Rademacher Complexity: Interpretation

$$
R_{n}(\mathcal{F}):=\mathbb{E}\left\{\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(Z_{i}\right)\right\}
$$

- This term considers an "imaginary binary classification" problem with randomly labeled examples $\left(Z_{i}, \sigma_{i}\right)$.
- If $\sigma_{i}=\operatorname{sign}\left(f\left(Z_{i}\right)\right), f$ is correct on $\left(Z_{i}, \sigma_{i}\right)$.
- Solving sup $=$ finding a "best" binary classifier.
- Fix $n$ and $\mathcal{F} \rightarrow \operatorname{draw} Z_{i}$ and $\sigma_{i} \rightarrow$ find $f$.


## Rademacher Complexity: Interpretation

$$
R_{n}(\mathcal{F}):=\mathbb{E}\left\{\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(Z_{i}\right)\right\}
$$

- This term considers an "imaginary binary classification" problem with randomly labeled examples $\left(Z_{i}, \sigma_{i}\right)$.
- If $\sigma_{i}=\operatorname{sign}\left(f\left(Z_{i}\right)\right), f$ is correct on $\left(Z_{i}, \sigma_{i}\right)$.
- Solving sup $=$ finding a "best" binary classifier.
- Fix $n$ and $\mathcal{F} \rightarrow$ draw $Z_{i}$ and $\sigma_{i} \rightarrow$ find $f$.
- $R_{n}(\mathcal{F})$ captures how well the "best classifier" from $\mathcal{F}$ can align with random labels.
- Large $R_{n}(\mathcal{F})$ means that there is some $f \in \mathcal{F}$, "flexible" enough to learn randomly labeled examples.
- e.g., linear functions v.s. neural networks


## Generalization Bound via Rademacher Complexity

## Theorem

Let $\mathcal{F}:=\{z \mapsto \ell(z, h) \mid h \in \mathcal{H}\}$ and $\ell(\cdot) \in[0,1]$. For all $h \in \mathcal{H}$,

$$
L(h) \leq \hat{L}(h)+2 R_{n}(\mathcal{F})+\sqrt{\frac{\ln \frac{1}{\delta}}{2 n}}
$$

with probability at least $1-\delta$.

- $f \in \mathcal{F}$ is a composition of $h$ and $\ell$.


## Proof Sketch: A Bird's-eye View

(1) Define a random variable $G_{n}$

- $G_{n}:=\sup _{h \in \mathcal{H}} L(h)-\hat{L}(h)$
- A maximum difference between the expected and empirical error.
- The bound of this term is a generalization bound.


## Proof Sketch: A Bird's-eye View

(1) Define a random variable $G_{n}$

- $G_{n}:=\sup _{h \in \mathcal{H}} L(h)-\hat{L}(h)$
- A maximum difference between the expected and empirical error.
- The bound of this term is a generalization bound.
(2) Show that $G_{n}$ concentrates to $\mathbb{E}\left\{G_{n}\right\}$.
- We will use McDiarmid's inequality.


## Proof Sketch: A Bird's-eye View

(1) Define a random variable $G_{n}$

- $G_{n}:=\sup _{h \in \mathcal{H}} L(h)-\hat{L}(h)$
- A maximum difference between the expected and empirical error.
- The bound of this term is a generalization bound.
(2) Show that $G_{n}$ concentrates to $\mathbb{E}\left\{G_{n}\right\}$.
- We will use McDiarmid's inequality.
(3) Use a technique called "symmetrization" to bound $\mathbb{E}\left\{G_{n}\right\}$ using the Rademacher complexity.


## Proof Sketch

\author{

1. Setup
}

Define an interesting quantity to us!

- Consider the maximum difference between $L(h)$ and $\hat{L}(h)$.

$$
G_{n}:=\sup _{h \in \mathcal{H}} L(h)-\hat{L}(h)
$$

- $G_{n}$ is a random variable that depends on $Z_{1}, \ldots, Z_{n}$.


## Proof Sketch

## 1. Setup

Define an interesting quantity to us!

- Consider the maximum difference between $L(h)$ and $\hat{L}(h)$.

$$
G_{n}:=\sup _{h \in \mathcal{H}} L(h)-\hat{L}(h)
$$

- $G_{n}$ is a random variable that depends on $Z_{1}, \ldots, Z_{n}$.
- We will consider the following tail bound:

$$
\mathbb{P}\left\{G_{n} \geq \varepsilon\right\}
$$

- What should we do?


## Proof Sketch I

## 2. Concentration

Convert a tail bound into an expectation!

- Let $g$ be the deterministic function such that $G_{n}:=g\left(Z_{1}, \ldots, Z_{n}\right)$.
- Then, the following holds:

$$
\left|g\left(Z_{1}, \ldots, Z_{i}, \ldots, Z_{n}\right)-g\left(Z_{1}, \ldots, Z_{i}^{\prime}, \ldots, Z_{n}\right)\right| \leq \frac{1}{n}
$$

- Why?
- Recall $\hat{L}(h)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(Z_{i}, h\right)$.
- Recall $\ell(\cdot) \in[0,1]$.
- We have

$$
|\underbrace{\sup _{h \in \mathcal{H}}[L(h)-\hat{L}(h)]}_{g\left(Z_{1}, \ldots, Z_{i}, \ldots, Z_{n}\right)}-\underbrace{\sup _{h \in \mathcal{H}}\left[L(h)-\hat{L}(h)+\frac{1}{n}\left(\ell\left(Z_{i}, h\right)-\ell\left(Z_{i}^{\prime}, h\right)\right)\right]}_{g\left(Z_{1}, \ldots, Z_{i}^{\prime}, \ldots, Z_{n}\right)}| \leq \frac{1}{n} .
$$

## Proof Sketch II

## 2. Concentration

- Apply the McDiarmid's inequality:

$$
\mathbb{P}\left\{G_{n} \geq \mathbb{E}\left\{G_{n}\right\}+\varepsilon^{\prime}\right\} \leq \exp \left(-2 n \varepsilon^{\prime 2}\right)
$$

- $g$ is a non-trivial function, including sup over $h \in \mathcal{H}$; thus, we cannot use the usual concentration inequality (e.g., the Hoeffding's inequality).
- But, we can still use the McDiarmid's inequality due to the bounded difference.


## Proof Sketch I

## 3. Symmetrization

Bound $\mathbb{E}\left\{G_{n}\right\}$ !

- $\mathbb{E}\left\{G_{n}\right\}$ is not easy to analysis as it depends on $L(h)$, an expectation of an unknown distribution $\mathcal{D}$.
- We will replace this to depend on $\mathcal{D}$ only through samples $Z_{1}, \ldots, Z_{n}$.
- The key idea of "symmetrization" is to introduce "ghost" samples $Z_{1}^{\prime}, \ldots, Z_{n}^{\prime}$, drawn i.i.d. from $\mathcal{D}$ to rewrite $\mathbb{E}\left\{G_{n}\right\}$.
- Let $\hat{L}^{\prime}(h):=\frac{1}{n} \sum_{i=1}^{n} \ell\left(Z_{i}^{\prime}, h\right)$.
- Rewrite $L(h)$ in terms of the ghost samples, i.e.,

$$
\mathbb{E}\left\{G_{n}\right\}=\mathbb{E}\left\{\sup _{h \in \mathcal{H}} L(h)-\hat{L}(h)\right\}=\mathbb{E}\left\{\sup _{h \in \mathcal{H}} \mathbb{E}\left\{\hat{L}^{\prime}(h)\right\}-\hat{L}(h)\right\}
$$

## Proof Sketch II

## 3. Symmetrization

- Simplify and bound this rewritten $\mathbb{E}\left\{G_{n}\right\}$ :

$$
\begin{aligned}
\mathbb{E}\left\{G_{n}\right\} & =\mathbb{E}\left\{\sup _{h \in \mathcal{H}} \mathbb{E}\left\{\hat{L}^{\prime}(h)\right\}-\hat{L}(h)\right\} \\
& =\mathbb{E}\left\{\sup _{h \in \mathcal{H}} \mathbb{E}\left\{\hat{L}^{\prime}(h)-\hat{L}(h) \mid Z_{1: n}\right\}\right\} \\
& \leq \mathbb{E}\left\{\mathbb{E}\left\{\sup _{h \in \mathcal{H}} \hat{L}^{\prime}(h)-\hat{L}(h) \mid Z_{1: n}\right\}\right\} \\
& =\mathbb{E}\left\{\sup _{h \in \mathcal{H}} \hat{L}^{\prime}(h)-\hat{L}(h)\right\} \\
& =\mathbb{E}\left\{\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n}\left(\ell\left(Z_{i}^{\prime}, h\right)-\ell\left(Z_{i}, h\right)\right)\right\}
\end{aligned}
$$

## Proof Sketch III

## 3. Symmetrization

- Remove the dependence on the ghost samples.
- Introduce the i.i.d. Rademacher variables $\sigma_{1}, \ldots, \sigma_{n}$, where $\sigma_{i}$ is uniform over $\{-1,1\}$.
- Observe that $\ell\left(Z_{i}^{\prime}, h\right)-\ell\left(Z_{i}, h\right)$ is symmetric around 0 .
- Thus, we have

$$
\begin{aligned}
\mathbb{E}\left\{G_{n}\right\} & \leq \mathbb{E}\left\{\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n}\left(\ell\left(Z_{i}^{\prime}, h\right)-\ell\left(Z_{i}, h\right)\right)\right\} \\
& =\mathbb{E}\left\{\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left(\ell\left(Z_{i}^{\prime}, h\right)-\ell\left(Z_{i}, h\right)\right)\right\} \\
& \leq \mathbb{E}\left\{\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell\left(Z_{i}^{\prime}, h\right)+\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n}\left(-\sigma_{i}\right) \ell\left(Z_{i}, h\right)\right\} \\
& =2 \mathbb{E}\left\{\sup _{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \ell\left(Z_{i}, h\right)\right\}=2 R_{n}(\mathcal{F})
\end{aligned}
$$

## Proof Sketch

## 4. Combine

- From concentration, we have

$$
\mathbb{P}\left\{G_{n} \geq \mathbb{E}\left\{G_{n}\right\}+\varepsilon^{\prime}\right\} \leq \exp \left(-2 n \varepsilon^{\prime 2}\right)
$$

- From symmetrization, we have

$$
\mathbb{E}\left\{G_{n}\right\} \leq 2 R_{n}(\mathcal{F})
$$

## Proof Sketch

## 4. Combine

- From concentration, we have

$$
\mathbb{P}\left\{G_{n} \geq \mathbb{E}\left\{G_{n}\right\}+\varepsilon^{\prime}\right\} \leq \exp \left(-2 n \varepsilon^{\prime 2}\right)
$$

- From symmetrization, we have

$$
\mathbb{E}\left\{G_{n}\right\} \leq 2 R_{n}(\mathcal{F})
$$

- Our goal is to bound the following tail probability:

$$
\begin{aligned}
\mathbb{P}\left\{G_{n} \geq \varepsilon\right\} & \leq \exp \left(-2 n\left(\varepsilon-\mathbb{E}\left\{G_{n}\right\}\right)^{2}\right) \\
& \leq \exp \left(-2 n\left(\varepsilon-2 R_{n}(\mathcal{F})\right)^{2}\right)
\end{aligned}
$$

## Proof Sketch

## 4. Combine

- From concentration, we have

$$
\mathbb{P}\left\{G_{n} \geq \mathbb{E}\left\{G_{n}\right\}+\varepsilon^{\prime}\right\} \leq \exp \left(-2 n \varepsilon^{\prime 2}\right)
$$

- From symmetrization, we have

$$
\mathbb{E}\left\{G_{n}\right\} \leq 2 R_{n}(\mathcal{F})
$$

- Our goal is to bound the following tail probability:

$$
\begin{aligned}
\mathbb{P}\left\{G_{n} \geq \varepsilon\right\} & \leq \exp \left(-2 n\left(\varepsilon-\mathbb{E}\left\{G_{n}\right\}\right)^{2}\right) \\
& \leq \exp \left(-2 n\left(\varepsilon-2 R_{n}(\mathcal{F})\right)^{2}\right)
\end{aligned}
$$

- This shows the claim, as

$$
\delta=\exp \left(-2 n\left(\varepsilon-2 R_{n}(\mathcal{F})\right)^{2}\right) \Rightarrow \varepsilon=2 R_{n}(\mathcal{F})+\sqrt{\frac{\ln \frac{1}{\delta}}{2 n}}
$$

## Connection to the VC Generalization Bound

$$
R_{n}(\mathcal{F}) \leq \sqrt{\frac{2 \mathrm{VC}(\mathcal{H})(\ln n+1)}{n}}
$$

- $\mathrm{VC}(\mathcal{H})$ : VC dimension of $\mathcal{H}$
- Related concepts:
- Empirical Rademacher Complexity
- A shattering coefficient or growth function
- Sauer's lemma


## Application: Support Vector Machine (SVM)

## Setup:

- $\mathcal{X} \in \mathbb{R}^{d}$ : example space


## Application: Support Vector Machine (SVM)

## Setup:

- $\mathcal{X} \in \mathbb{R}^{d}$ : example space
- $\mathcal{Y}:=\{-1,1\}$ : binary label space


## Application: Support Vector Machine (SVM)

## Setup:

- $\mathcal{X} \in \mathbb{R}^{d}:$ example space
- $\mathcal{Y}:=\{-1,1\}$ : binary label space
- $\mathcal{H}$ : a set of linear functions (without a bias term for simplicity), i.e.,

$$
\mathcal{H}:=\left\{x \mapsto w \cdot x \mid w \in \mathbb{R}^{d},\|w\|_{2} \leq 1\right\}
$$

or equivalently $\mathcal{H}:=\mathbb{R}^{d}$.

## Application: Support Vector Machine (SVM)

## Setup:

- $\mathcal{X} \in \mathbb{R}^{d}:$ example space
- $\mathcal{Y}:=\{-1,1\}$ : binary label space
- $\mathcal{H}$ : a set of linear functions (without a bias term for simplicity), i.e.,

$$
\mathcal{H}:=\left\{x \mapsto w \cdot x \mid w \in \mathbb{R}^{d},\|w\|_{2} \leq 1\right\}
$$

or equivalently $\mathcal{H}:=\mathbb{R}^{d}$.

- $\ell_{\gamma}$ : margin loss

$$
\ell_{\gamma}(v):=\min \left\{1, \max \left\{0,1-\frac{v}{\gamma}\right\}\right\},
$$

## Application: Support Vector Machine (SVM)

## Setup:

- $\mathcal{X} \in \mathbb{R}^{d}$ : example space
- $\mathcal{Y}:=\{-1,1\}$ : binary label space
- $\mathcal{H}$ : a set of linear functions (without a bias term for simplicity), i.e.,

$$
\mathcal{H}:=\left\{x \mapsto w \cdot x \mid w \in \mathbb{R}^{d},\|w\|_{2} \leq 1\right\}
$$

or equivalently $\mathcal{H}:=\mathbb{R}^{d}$.

- $\ell_{\gamma}$ : margin loss

$$
\ell_{\gamma}(v):=\min \left\{1, \max \left\{0,1-\frac{v}{\gamma}\right\}\right\}
$$

- $L_{\gamma} / \hat{L}_{\gamma}$ : the expected/empirical margin loss

$$
\left.L_{\gamma}(w):=\mathbb{E}\left\{\ell_{\gamma}(y(w \cdot x))\right\} \quad \text { and } \quad \hat{L}_{\gamma}(w):=\frac{1}{n} \sum_{i=1}^{n} \ell_{\gamma}\left(y_{i}\left(w \cdot x_{i}\right)\right)\right\}
$$

## A Generalization Bound of Large-margin Classifiers

## Theorem

For all $w \in \mathcal{H}$ and $\gamma>0$,

$$
L(w) \leq \hat{L}_{\gamma}(w)+\frac{2 R_{n}(\mathcal{H})}{\gamma}+\sqrt{\frac{\ln \frac{1}{\delta}}{2 n}}
$$

with probability at least $1-\delta$.

## Proof Sketch I

- Recall

$$
\left.\ell_{\gamma}(v):=\min \left\{1, \max \left\{0,1-\frac{v}{\gamma}\right\}\right\}, \quad L_{\gamma}(w):=\mathbb{E}\left\{\ell_{\gamma}(y(w \cdot x))\right\}, \quad \text { and } \quad \hat{L}_{\gamma}(w):=\frac{1}{n} \sum_{i=1}^{n} \ell_{\gamma}\left(y_{i}\left(w \cdot x_{i}\right)\right)\right\}
$$

- Our generalization bound via the Rademacher complexity:

$$
L(h) \leq \hat{L}(h)+2 R_{n}(\mathcal{F})+\sqrt{\frac{\ln \frac{1}{\delta}}{2 n}}
$$

- As $\ell_{0-1} \leq \ell_{\gamma}$, for any $w \in \mathcal{H}$, we have

$$
L(w) \leq L_{\gamma}(w)
$$

## Proof Sketch II

- Thus, we have

$$
\begin{align*}
L(w) & \leq L_{\gamma}(w) \\
& \leq \hat{L}_{\gamma}(w)+2 R_{n}\left(\ell_{\gamma} \circ \mathcal{H}\right)+\sqrt{\frac{\ln \frac{1}{\delta}}{2 n}}  \tag{1}\\
& \leq \hat{L}_{\gamma}(w)+\frac{2 R_{n}(\mathcal{H})}{\gamma}+\sqrt{\frac{\ln \frac{1}{\delta}}{2 n}} \tag{2}
\end{align*}
$$

- (1) the generalization bound via Rademacher complexity.
- (2) the Talagrand's lemma (check out our references!)


## From Theory to Algorithm I

From the Large-margin Bound to the SVM Algorithm

## Theory:

$$
L(w) \leq \hat{L}_{\gamma}(w)+\frac{2 R_{n}(\mathcal{H})}{\gamma}+\sqrt{\frac{\ln \frac{1}{\delta}}{2 n}}
$$

## Algorithm:

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n} \ell_{\text {hinge }}\left(y_{i}\left(w \cdot x_{i}\right)\right)+\lambda\|w\|_{2}
$$

## From Theory to Algorithm II

From the Large-margin Bound to the SVM Algorithm

## Connection?

- margin loss $\ell_{\gamma}(v)$ and hinge loss $\ell_{\text {hinge }}(v)$ :

$$
\ell_{\gamma}(v):=\min \left\{1, \max \left\{0,1-\frac{v}{\gamma}\right\}\right\} \quad \text { and } \quad \ell_{\text {hinge }}(v):=\max (0,1-v)
$$

- the upper bound of $\ell_{\gamma}(v)$ :

$$
\begin{aligned}
\ell_{\gamma}(y(w \cdot x)) & =\min \left\{1, \max \left\{0,1-\frac{y(w \cdot x)}{\gamma}\right\}\right\} \\
& \leq \max \left\{0,1-\frac{y(w \cdot x)}{\gamma}\right\} \\
& =\max \left\{0,1-y\left(\frac{w}{\gamma} \cdot x\right)\right\} \\
& =\ell_{\text {hinge }}\left(y\left(\frac{w}{\gamma} \cdot x\right)\right)
\end{aligned}
$$

## From Theory to Algorithm III

## From the Large-margin Bound to the SVM Algorithm

- An algorithm that minimizes the upper bound (given a hyper-parameter $\gamma$ ):

$$
\min _{w:\|w\|_{2} \leq 1} \frac{1}{n} \sum_{i=1}^{n} \ell_{\text {hinge }}\left(y_{i}\left(\frac{w}{\gamma} \cdot x_{i}\right)\right)
$$

- The change of a variable:

$$
w^{\prime}=\frac{w}{\gamma} \quad \Rightarrow \quad\left\|w^{\prime}\right\|_{2} \leq \frac{1}{\gamma}
$$

- SVM algorithm:

$$
\min _{w^{\prime}:\left\|w^{\prime}\right\|_{2} \leq \frac{1}{\gamma}} \frac{1}{n} \sum_{i=1}^{n} \ell_{\text {hinge }}\left(y_{i}\left(w^{\prime} \cdot x_{i}\right)\right) \Longleftrightarrow \min _{w^{\prime} \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ell_{\text {hinge }}\left(y_{i}\left(w^{\prime} \cdot x_{i}\right)\right)+\lambda\left\|w^{\prime}\right\|_{2}
$$

## SVM is Agnostic-PAC

## Bound (again): Given $\gamma$

$$
L(w) \leq \underbrace{\hat{L}_{\gamma}(w)}_{\text {minimized }}+\frac{2 R_{n}(\mathcal{H})}{\gamma}+\sqrt{\frac{\ln \frac{1}{\delta}}{2 n}}
$$

Why? - the same argument as in ERM.

$$
\begin{aligned}
L(\mathcal{A}(\mathcal{S}))-L\left(h^{*}\right) & =\left\{L\left(\mathcal{A}_{\mathrm{SVM}}(\mathcal{S})\right)-\hat{L}\left(\mathcal{A}_{\mathrm{SVM}}(\mathcal{S})\right)\right\}+\left\{\hat{L}\left(\mathcal{A}_{\mathrm{SVM}}(\mathcal{S})\right)-\hat{L}\left(h^{*}\right)\right\}+\left\{\hat{L}\left(h^{*}\right)-L\left(h^{*}\right)\right\} \\
& \leq \underbrace{\left\{L\left(\mathcal{A}_{\mathrm{SVM}}(\mathcal{S})\right)-\hat{L}\left(\mathcal{A}_{\mathrm{SVM}}(\mathcal{S})\right)\right\}}_{\text {uniform convergence }}+\underbrace{\left\{\hat{L}\left(h^{*}\right)-L\left(h^{*}\right)\right\}}_{\text {concentration inequality }} \\
& \leq \frac{2 R_{n}(\mathcal{H})}{\gamma}+\sqrt{\frac{\ln \frac{1}{\delta_{1}}}{2 n}}+\sqrt{\frac{\ln \frac{1}{\delta_{2}}}{2 n}}
\end{aligned}
$$

with probability at least $1-\left(\delta_{1}+\delta_{2}\right)$.

## Conclusion

(1) We have explored generalization bounds via uniform convergence under various setups.

## Conclusion

(1) We have explored generalization bounds via uniform convergence under various setups.

- $\mathcal{H}$ : finite


## Conclusion

(1) We have explored generalization bounds via uniform convergence under various setups.

- $\mathcal{H}$ : finite
- $\mathcal{H}$ : infinite - Rademacher complexity


## Conclusion

(1) We have explored generalization bounds via uniform convergence under various setups.

- $\mathcal{H}$ : finite
- $\mathcal{H}$ : infinite - Rademacher complexity
- $\ell: 0-1$ loss


## Conclusion

(1) We have explored generalization bounds via uniform convergence under various setups.

- $\mathcal{H}$ : finite
- $\mathcal{H}$ : infinite - Rademacher complexity
- $\ell: 0-1$ loss
- $\ell$ : margin loss


## Conclusion

(1) We have explored generalization bounds via uniform convergence under various setups.

- $\mathcal{H}$ : finite
- $\mathcal{H}$ : infinite - Rademacher complexity
- $\ell:$ : $0-1$ loss
- $\ell$ : margin loss
(2) What are potential limitations of statistical learning theory?


## Conclusion

(1) We have explored generalization bounds via uniform convergence under various setups.

- $\mathcal{H}$ : finite
- $\mathcal{H}$ : infinite - Rademacher complexity
- $\ell:$ : $0-1$ loss
- $\ell$ : margin loss
(2) What are potential limitations of statistical learning theory?
- the i.i.d. assumption!
(3) In online learning, we will learn a learning algorithm without the i.i.d. assumption.

