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Statistical Queries (SQ)
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Learning with Noise

SQ generalizes learning with random classification noise.
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What is Learning from Statistical Queries (SQ)?

TL;DR: a generalized version of PAC learning for designing classification noise-tolerant
PAC learning algorithms.

▶ PAC learning: access to EX(h∗,D) for a labeled example
▶ PAC learning with random classification noise: access to EXη(h∗,D) for a labeled example
▶ SQ: access to STAT(h∗,D) for a statistic of labeled examples

Main difference: access to the estimate of statistics from multiple samples, instead of one
sample

Recall adversarial examples and noisy labels

Why we have to learn? maybe useful for differential privacy and unlearning
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PAC Learning with Random Classification Noise

Definition (simplified definition)

An algorithm A is a PAC-learning algorithm for H with random classification noise if for any
ε > 0, δ > 0, 0 ≤ η ≤ 1

2 , h
∗ ∈ H, and D separable by h∗, and for some minimum sample size

n′ (which depends on ε, δ, η, D), the following holds with any sample size n ≥ n′:

P {L(A(S)) ≤ ε} ≥ 1− δ,

where S := ((x1, y1), . . . , (xn, yn)) and (xi, yi) ∼ EXη(h∗,D).

Suppose binary classification

η: a noise rate

EXη(h∗,D): the noisy example oracle that randomly flips the label with η probability

If η = 1
2 , no hope to learn.
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Setup for SQ

D: a distribution over X
Binary classification, i.e., Y := {0, 1}
χ : X × Y → [−1, 1]: a map (e.g., 0-1 loss)

α: a tolerance parameter

(χ, α): a statistical query

STAT(h,D) : (χ, α) 7→ [−1, 1]: a statistical query oracle (i.e., a data source)

v ∈ [0, 1]: The response of STAT(h∗,D), where∣∣∣∣ E
x∼D
{χ(x, h∗(x))} − v

∣∣∣∣ ≤ α.

▶ Suppose that the statistical query oracle satisfies this with probability one.
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Learning from SQ

Definition (simplified definition)

An algorithm A is a statistical query algorithm for H if for any ε > 0, h∗ ∈ H, and D over X ,
and for some minimum number of queries n′ (which depends on ε, δ,D), the following holds
with any number of queries n ≥ n′:

L(A(S)) ≤ ε,

where S := (v1, . . . , vn) and vi ∼ STAT(h∗,D).

Suppose that the statistic is efficiently computed.

No confidence parameter 1− δ; it is required in the statistical query oracle.

If an algorithm is a SQ algorithm, then it is a tolerant algorithm for random classification
noise.
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Example: Stochastic Convex Optimization

Setup:

H: a set of convex functions

ℓ(h, z): convex and sub-differentiable in h

separable assumption (i.e., E{ℓ(h∗, z)} = 0 for some h∗ ∈ H)

Stochastic convex optimization (in learning):

min
h∈H

Ez∼D {ℓ(h, z)}

We use the mirror descent algorithm to solve this.
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Mirror Descent Algorithm
A generalized version of the gradient descent algorithm.

The mirror descent considers the “geometry” of optimization.

Example: a proximal gradient descent algorithm
▶ Minimization:

min
h∈H

Ez∼D{ℓ(h, z)}

▶ Minimization with linear approximation:

ht+1 ← argmin
h

{
η (ℓ(ht, zt) + ⟨∇ℓ(ht, zt), h− ht⟩)︸ ︷︷ ︸

linear approximation

+
1

2
∥h− ht∥22︸ ︷︷ ︸
regularizer

}

ht+1 ← argmin
h

{
η⟨∇ℓ(ht, zt), h⟩+

1

2
∥h− ht∥2

}
▶ This is equivalent to the conventional gradient descent algorithm, i.e.,

η∇ℓ(ht, zt) + (ht+1 − ht) = 0 =⇒ ht+1 = ht − η∇ℓ(ht, zt)
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Gradient Descent Algorithm with SQ

Algorithm (for ∥ · ∥2):

h̄ :=
1

T

T∑
t=1

ht where ht+1 ← argmin
h

{
η⟨ḡt, h⟩+

1

2
∥h− ht∥22

}

ḡt :=
1
K

∑K
k=1∇ℓ(ft, z

(k)
t )

STAT(h∗,D) = ḡt: an “α-good” gradient value

The above algorithm is a SQ algorithm, i.e., E{ℓ(h̄, z)} ≤ ε.
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