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What is Learning Theory?

Theory on exploring conditions (or assumptions) when machines can learn from data.
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Historical Figure: Vladimir Vapnik

@ "“The Nature of Statistical Learning Theory”: summary of his papers up to 1995.

e VC dimension, SVM, ...

vapnik

Professor of Columbia, Fellow of NEC Labs Ameri
Verified email at nec-labs.com

machine leaming  statistics ~ computer science
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Historical Figure: Leslie Valiant

Leslie Valiant

Unknown affiliation
No verified email

TITLE CITED BY YEAR

Atheory of the leamable 7939 1984
LG Valiant
Communications of the ACM 27 (11), 1134-1142

Abridging model for parallel computation 5390 1990
LG Valiant
‘Communications of the ACM 33 (8), 103-111

The complexity of computing the permanent 3413 1979
LG Valiant
Theoretical computer science 8 (2), 189-201

The complexity of enumeration and reliability problems 2579 1979
LG Valiant
siam Journal on Computing 8 (3), 410-421

Cryptographic limitations on leaming boolean formulae and finite automata 1318 1904
M Kearns, L Valiant
Journal of the ACM (JACM) 41 (1), 67-95

/ Random generation of combinatorial structures from a uniform distribution 1218 1986
o ”,u/”' MR Jerrum, LG Valiant, VV Vazirani

//% /L‘[ i Theoretical computer science 43, 169-188

et

@ "“PAC Learning Theory” in 1934
@ Turing Award winner in 2010
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Four Key Ingredients of Learning Theory
The simplified objective of statistical learning theory:
find f
subj. to feF
E(w,y)ND ¢ ('T’ Y, f) <e

or
min E {(z,y,
mn B (2,9, [)
o Ingredient 1: A distribution D (e.g., a distribution over labeled images)
e Ingredient 2: Hypothesis space F (e.g., linear functions, a set of resnet)
o Ingredient 3: A loss function ¢ (e.g., 0-1 loss, L1 loss, cross-entropy loss)
e Ingredient 4: A learning algorithm (e.g., GD)
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Main Goal: Finding Conditions for Learnability
An Example

Conditions:
@ D: linearly separable dog and cat image distribution
@ F: linear functions — encode prior of a data distribution
@ /: 0-1 loss for classification — represent task

@ a learning algorithm: a gradient descent (GD) algorithm

Checking Learnability:
If we prove that the GD algorithm can find the true linear function with a “desired level” of
loss, we say F is learnable. In this case, we say the GD algorithm is a “good” algorithm.

6/21



Contents from

Foundations of
Machine Learning condeon

CS229T/STAT23L: Statistical Learning Theory (Winter 2016)

Perey Linng
Last updated Wed Apr 20 2016 01136

s et ot will b et perodialy s the oo goss on. - The Appendic
dosribe the busic otation defitions and theoron

Contents

1 Overview a
L1 What is this course about? (Lecture 1) . 1
12 Asymptotics (Lecture 1) R . 5
L3 Usiform convergence (Lecture 1) . R . 6
14 Kernel methods (Lecture 1) .. . . . . . 8
15 Online learning (Lecture 1) 9

2 Asymptotics 10
21" Overview (Lecture 1) 0
22 Gussinn mean estimation (Lecture 1) 1
23 Multinomial estimation (Lecture 1) 13
24 Bxponential s (Lecture 2) 16
25 Maximum entropy principle (Lecture e 19
26 Method of moments for latent-y vxnubﬂe mudds (L\sc',ure 3) . .3
2.7 Fixed design linear regression (Lecture 3) . ")
25 General o fancions el ranom dign (Lot w k)
29 Neglrivd o s rar reosion Lo w0
2 m Summary (m ure 4) i a
211 Referenc . s s
3 Uniform convergance ©
31 Overview (Lecture 5) . . PR PR 47
32 Formal setup (Lecture 5) o o
33 Realizable fnie hypothess casses (Locture 5) 3
44 Generaluaion bonnds o o sonergees (e 5 5
contsuion nalin (Lo 5 5
50 o vppoets cmn o ) &
57 Coneenttion et (ot o) 20 &

38 Rademacher complexity (Lecture 6) . e . 66 .
39 Finite hypothesis clsses (Lecture 7) o lm Mehryar Mohri,
3.10 Shattering coefficient (Lecture 7) . . . . . ... .1 Th Afshin Rostamizadeh,
1 and Ameet Talwalkar

and various papers. 7/21



Why PAC Learning?

The key questions in machine learning:
@ When can we learn?

@ How many samples do we need to have a good model?

The PAC framework provides partial answers to these key questions.
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Recall Four Key Ingredients of Learning Theory

e Distribution — setup / assumption

» image distribution, language distribution

» samples are independently drawn from the same distribution
@ Loss — a goodness metric for a desired task

» classification: 0-1 loss
> regression: L1 loss

Hypothesis space — prior on the distribution, what we will design!

» convolution network: good for image classification
» transformers: good for language modeling

A learning algorithm — what we will design!
» convolution network: good for image classification
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Assumption

Assumption

We assume that labeled examples are independently drawn from the same (and unknown)
distribution D over labeled examples X x ).

“independent”: not sequential data
“unknown”: yes, we don’t the true distribution
“same”: key for success

A.K.A. the i.i.d. assumption

The i.i.d. assumption is the standard setup.

It is easily broken due to distribution shift.

® 6 6 6 o o o

Online learning relaxes this assumption (under some conditions).
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A Goodness Metric: Expected Error for Classification

Definition (expected error)

Given a hypothesis h € H and an underlying distribution D, the expected error is defined by
L(h) =P {h(z) # y} = E{1 (h(z) # )},
where the probability is taken over (x,y) ~ D and 1 is the indicator function.

@ Suppose the classification task. But, we can use any task-dependent loss.
@ This expected error of h is sometimes called the risk of h or the generalization error of h.

@ The indicator function is defined as follows:

1 (s) = {1 if sis true

0 if sis false
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A Goodness Metric: Empirical Error

Definition (empirical error)
Given a hypothesis h € H and labeled samples S := ((1,91), - , (Zn,yn)), the empirical
error is defined by

Z]l xz %yz,

where 1 is the indicator function.

@ This empirical error of h is sometimes called the empirical risk of h.
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One More Assumption

Assumption
We assume that a distribution D is separable by some hypothesis h* € H, i.e.,

L(h*) = 0.

@ e.g., learning a threshold function.
@ This assumption is strong but useful in some cases (e.g., PAC conformal prediction).

@ This assumption will be removed later (in a more general learning framework).
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Approximately Correct
A Goodness Metric for Algorithms

Definition
Given € > 0, we say that & is approximately correct if

L(h) <e.

@ ¢ is a user-defined parameter.
@ Recall that L is an expected error.
@ We want to find h that achieves a desired error level ¢.

@ h is learned from data; thus, A is also a random variable.
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Probably Approximately Correct (PAC)

A Goodness Metric for Algorithms

Definition
Given e >0, >0, and S :== ((1,y1), .-, (Tn,Yn)) € (X x V)", we say that an algorithm A
is probably approximately correct if

P {L(AS) <e} > 1-6,
where A : (X x ))* — H and the probability is taken over S ~ D".

o S*:=J2,95"
@ S~ D" iid. samples

e A: a learning algorithm
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PAC Learning Algorithm

Definition (simplified definition)

An algorithm A is a PAC-learning algorithm for 7 if for any € > 0, § > 0, h* € H, and D
separable by h*, and for some minimum sample size n* (which depends on ¢, §, D), the
following holds with any sample size n > n':

P{L(A(S)) <e}>1-4,
where S := ((z1,91), -, (Tn,yn)) ~ D".

Please check out the original PAC learning definition.
The algorithm should satisfy the PAC guarantee for any D and h*.

If Dis “complex” (thus h* is complex), we need more samples.

If € (or §) is small, we need more samples.
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Example: A Learning Bound for a Finite Hypothesis Set |

Setup:
@ H: a finite set of functions mapping from X to )
> e.g., a set of experts
@ D: a distribution is separable by h* € H
o S: labeled examples
o A: an algorithm that satisfies L(A(S)) =0

» ie., A returns a “consistent” hypothesis.
» Here, the algorithm exploits the fact on separability!
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Example: A Learning Bound for a Finite Hypothesis Set Il

Theorem

Foranye >0, 0 >0, h* € H, and D separable by h*, we have
LIAS)) < L (log [H] + log -
= 2 g 5
with probability at least 1 — .

o A is a PAC learning algorithm.

@ Sample complexity?

1

m > - <log|’H\ + log

1
0
> See? As H gets complex and as € and § are smaller, we need more samples.

@ key: A union bound over the events of each hypothesis.
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Example: A Learning Bound for a Finite Hypothesis Set 1|

Lemma (the union bound)
Let Ay, ..., Ak be K different events (which might not be independent). Then,

K K
IP{UAk} <> P {4}
k=1

k=1
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Example: A Learning Bound for a Finite Hypothesis Set IV

Proof Sketch:
Let H. :={h € H | L(h) > €}. Then, we have

]P{EIhEHs,ﬁ(h)—O}—]P{ \V L) =

} (1)

heH,
<Y P {i(h) - 0} (2)
heHe
<Y - ©)
heH
< HI(L—e)™.

(1): uniform convergence

°
@ (2): union bound due to the finite hypotheses
°

(3): a “point” bound due to the i.i.d. assumption and 1{h(z) # y} is a Bernoulli r.v.
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Next

Relax assumptions:
@ What if we have an infinite hypothesis set?
@ What if D is not separable?

We will explore a more general learning bound.
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