Trustworthy Machine Learning

Online Learning

Sangdon Park
POSTECH

Contents from

CS229T/STAT231: Statistical Learning Theory (Winter 2016)
Percy Liang
Last updated Wed Apr 202016 01:36
These lecture notes will be updated periodically as the course goes on. The Appendix
describes the bosic notation, definitions and theorems. describes the besic notation, definitions, and theorems.

Contents

1 Overview
1.1 What is this course about? (Lecture 1)
1.2 Asymptoties (Lecture 1)
1.3 Uniform convergenos (Lecture 1)
$\begin{array}{ll}1.4 & \text { Kemel methods (Lecture 1) } \\ 1.5 & \text { Online learning (Lecture 1) }\end{array}$
2 Asymptotics
2.1 2.2 Gyerview (Lecture 1) Aasian mean estimation (Lecture
${ }_{2.2}^{2.2}$ Multinomial estimation (Lecture 1)
2.4 Exponential families (Lecture 2)
2.5 Maximum entropy principle (Lexture 2)
2.6 Method of moments for latent-variable models (Lecture 3)
2.7 Fixed design linear regression (Lecture 3)
2.8 General loss functions and random design (Lecture 4)
2.9 Regularized fixed design linear regression (Lecture 4)
2.10 Summary (I

Uniform convergence
${ }_{3.2}$ Orrmal setup (Lecture 5)
3.3 Realizable finite hypothesis classes (Lecture 5)
3.4 Generalization bounds vis uniform cocturergence (Lecture 5)
3.5 Concentration inoxualities (Lecture 5)
${ }_{3.7}^{3.6}$ Coninte hypothessis classes (Lecture 6) …....
3.8 Rademacher complexity (Lecture 6)
3.9 Finite hypothesis classes (Lecture 7)
3.10 Shattering coefficient (Lecture 7)

Foundations of

 Machine Learning scond dition

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar

Motivation

- We have considered statistical learning (i.e., learning under the i.i.d. assumption)

Motivation

- We have considered statistical learning (i.e., learning under the i.i.d. assumption)
- However, this assumption can be broken, e.g., distribution shift, price data

Motivation

- We have considered statistical learning (i.e., learning under the i.i.d. assumption)
- However, this assumption can be broken, e.g., distribution shift, price data
- Here, we will weaken this assumption.
- batch to online: "how data arrives"
- statistical to adversarial: "how data are generated"

Setup

- Prediction task: learn to map an example $x \in \mathcal{X}$ to a label $y \in \mathcal{Y}$

Setup

- Prediction task: learn to map an example $x \in \mathcal{X}$ to a label $y \in \mathcal{Y}$
- Online learning game between a learner and nature

Protocol:

for $t=1, \ldots, T$ do
Learner receives an example $x_{t} \in \mathcal{X}$
Learner outputs prediction $p_{t} \in \mathcal{Y}$
Learner receives a true label $y_{t} \in \mathcal{Y}$
Learner suffers loss $\ell\left(y_{t}, p_{t}\right)$
Learner update model parameters end for

Setup

- Prediction task: learn to map an example $x \in \mathcal{X}$ to a label $y \in \mathcal{Y}$
- Online learning game between a learner and nature

Protocol:

$$
\text { for } t=1, \ldots, T \text { do }
$$

Learner receives an example $x_{t} \in \mathcal{X}$
Learner outputs prediction $p_{t} \in \mathcal{Y}$
Learner receives a true label $y_{t} \in \mathcal{Y}$
Learner suffers loss $\ell\left(y_{t}, p_{t}\right)$
Learner update model parameters end for

- The learner is a function \mathcal{A} that returns the current prediction given the full history, i.e.,

$$
p_{t+1}=\mathcal{A}\left(x_{1: t}, p_{1: t}, y_{1: t}, x_{t+1}\right)
$$

Example: Online Binary Classification for Spam Filtering

Be careful with this message The sender hasn't authenticated this message so Gmail can't verify that it actually came from them.

- examples: $\mathcal{X}:=\{0,1\}^{d}$ are boolean feature vectors (presence or absence of a word)
- labels: $\mathcal{Y}:=\{+1,-1\}$ are whether a document is spam or not
- zero-one loss: $\ell\left(y_{t}, p_{t}\right)=\mathbb{1}\left(y_{t} \neq p_{t}\right)$ is whether the prediction was incorrect

Remarks

- In batch learning, we have a training phase and test phase; but in online learning, they are interleaved.

Remarks

- In batch learning, we have a training phase and test phase; but in online learning, they are interleaved.
- The online learning setup allows to use the full history.
- The history grows in time by $O(T)$ and in space by $O(T)$.
- This means that we can use any batch learning algorithm on the history at each time.
- However, online algorithms tend to be lightweight, i.e., the amount of work by an algorithm should not grow with t.

Remarks

- In batch learning, we have a training phase and test phase; but in online learning, they are interleaved.
- The online learning setup allows to use the full history.
- The history grows in time by $O(T)$ and in space by $O(T)$.
- This means that we can use any batch learning algorithm on the history at each time.
- However, online algorithms tend to be lightweight, i.e., the amount of work by an algorithm should not grow with t.
- Online learning algorithms have the potential to adapt.
- e.g., we have labels on adversarial examples!

Remarks

- In batch learning, we have a training phase and test phase; but in online learning, they are interleaved.
- The online learning setup allows to use the full history.
- The history grows in time by $O(T)$ and in space by $O(T)$.
- This means that we can use any batch learning algorithm on the history at each time.
- However, online algorithms tend to be lightweight, i.e., the amount of work by an algorithm should not grow with t.
- Online learning algorithms have the potential to adapt.
- e.g., we have labels on adversarial examples!
- For some applications (e.g., spam filtering), examples are generated by an adversary.

"Goodness" Metric

How to measure the performance of an online learning algorithm?

"Goodness" Metric

How to measure the performance of an online learning algorithm?

- The cumulative loss of the learner, i.e.,

$$
\sum_{t=1}^{T} \ell\left(y_{t}, p_{t}\right)
$$

"Goodness" Metric

How to measure the performance of an online learning algorithm?

- The cumulative loss of the learner, i.e.,

$$
\sum_{t=1}^{T} \ell\left(y_{t}, p_{t}\right)
$$

- No! In the adversarial setting, the adversary can manipulate data to make the learner trivially bad loss.

"Goodness" Metric

How to measure the performance of an online learning algorithm?

- The cumulative loss of the learner, i.e.,

$$
\sum_{t=1}^{T} \ell\left(y_{t}, p_{t}\right)
$$

- No! In the adversarial setting, the adversary can manipulate data to make the learner trivially bad loss.
- What do you do when your grade is awful? Compare to the best grade in your class!

Regret

Definition

$$
\text { Regret }:=\underbrace{\sum_{t=1}^{T} \ell\left(y_{t}, p_{t}\right)}_{\text {learner }}-\underbrace{\min _{h \in \mathcal{H}} \sum_{t=1}^{T} \ell\left(y_{t}, h\left(x_{t}\right)\right)}_{\text {best expert }}
$$

- \mathcal{H} is a class of experts.
- The best export is a role model of the leaner.
- We will consider the worst case regret (i.e., labeled examples are generated by an adversary)

Negative Result

Setup:

- binary classification, i.e., $y \in\{-1,+1\}$
- zero-one loss, i.e., $\ell\left(y_{t}, p_{t}\right):=\mathbb{1}\left(p_{t} \neq y_{t}\right)$
- the learner is fully deterministic.

claim

For all deterministic learner \mathcal{A}, there exists an \mathcal{H} and the sequence of labeled examples such that

$$
\text { Regret } \geq \frac{T}{2} .
$$

- Too bad...
- Why?

Negative Result: Why? Intuition

- An adversary (who has full knowledge of the learner) can choose y_{t} to make it different to the learner's choice p_{t}.
- Thus, the learner's cumulative loss is T !
- Not yet; how about the best expert's loss?
- Consider two experts, i.e., $\mathcal{H}:=\left\{h_{-1}, h_{+1}\right\}$ (where h_{y} always predict y).
- Thus, we have

$$
\begin{aligned}
& \ell\left(y_{t}, h_{-1}\left(x_{t}\right)\right)+\ell\left(y_{t}, h_{+1}\left(x_{t}\right)\right)=1 \Rightarrow \sum_{t=1}^{T} \ell\left(y_{t}, h_{-1}\left(x_{t}\right)\right)+\sum_{t=1}^{T} \ell\left(y_{t}, h_{+1}\left(x_{t}\right)\right)=T \\
& \Rightarrow \sum_{t=1}^{T} \ell\left(y_{t}, h_{-1}\left(x_{t}\right)\right) \leq \frac{T}{2} \text { or } \sum_{t=1}^{T} \ell\left(y_{t}, h_{+1}\left(x_{t}\right)\right) \leq \frac{T}{2} \\
& \Rightarrow \text { Regret }:=\underbrace{\sum_{t=1}^{T} \ell\left(y_{t}, p_{t}\right)}_{=T}-\underbrace{\min _{h \in \mathcal{H}} \sum_{t=1}^{T} \ell\left(y_{t}, h\left(x_{t}\right)\right) \geq \frac{T}{2} .}_{\leq \frac{T}{2}}
\end{aligned}
$$

Outline

- Halving Algorithm
- Deterministic
- Separable assumption
- Finite \mathcal{H}
- Exponential Weighting Algorithm
- Randomized
- No separable assumption
- Finite \mathcal{H}
- Perceptron Algorithm
- Deterministic
- Separable assumption
- Infinite \mathcal{H}

Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert $h^{*} \in \mathcal{H}$ obtains zero cumulative loss (i.e., $\ell\left(y_{t}, h^{*}\left(x_{t}\right)\right)=0$ for all $t \in\{1, \ldots, T\}$).

Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert $h^{*} \in \mathcal{H}$ obtains zero cumulative loss (i.e., $\ell\left(y_{t}, h^{*}\left(x_{t}\right)\right)=0$ for all $t \in\{1, \ldots, T\}$).

- This impose restrictions on adversaries.

Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert $h^{*} \in \mathcal{H}$ obtains zero cumulative loss (i.e., $\ell\left(y_{t}, h^{*}\left(x_{t}\right)\right)=0$ for all $t \in\{1, \ldots, T\}$).

- This impose restrictions on adversaries.
- We saw a similar assumption in PAC learning.

Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert $h^{*} \in \mathcal{H}$ obtains zero cumulative loss (i.e., $\ell\left(y_{t}, h^{*}\left(x_{t}\right)\right)=0$ for all $t \in\{1, \ldots, T\})$.

- This impose restrictions on adversaries.
- We saw a similar assumption in PAC learning.
- Practical setup? adaptive conformal prediction

Halving Algorithm

```
Algorithm 1 Halving Algorithm
    \(\mathcal{H}_{1} \leftarrow \mathcal{H}\)
2: for \(t=1, \ldots, T\) do
3: \(\quad\) Observe \(x_{t}\)
4: \(\quad\) Predict \(\hat{y}_{t}=\operatorname{MajorityVote}\left(\mathcal{H}_{t}, x_{t}\right)\)
5: Observe \(y_{t}\)
        if \(\hat{y}_{t} \neq y_{t}\) then
            \(\mathcal{H}_{t+1} \leftarrow\left\{h \in \mathcal{H}_{t} \mid h\left(x_{t}\right)=y_{t}\right\}\)
        else
            \(\mathcal{H}_{t+1} \leftarrow \mathcal{H}_{t}\)
        end if
    end for
```

- $\mathcal{Y}:=\{-1,+1\}$
- \mathcal{H}_{t} : a set of correct experts.
- Under the separable assumption, keep only correct experts.
- Due to the separable assumption, we can discard at least half of experts at some iterations!

Halving Algorithm: A Regret Bound

Theorem

Under the realizable assumption, for any $\left(x_{t}, y_{t}\right)_{t=1}^{T}$, we have
Regret $\leq \log _{2}|\mathcal{H}|$.

Halving Algorithm: A Regret Bound

Theorem

Under the realizable assumption, for any $\left(x_{t}, y_{t}\right)_{t=1}^{T}$, we have

$$
\text { Regret } \leq \log _{2}|\mathcal{H}| .
$$

- Very strong results due to the separable assumption.
- after a finite number of iterations, the predictor never makes mistakes.

Halving Algorithm: A Regret Bound

Proof Sketch

- Let M be the number of mistakes.
- For each mistake, at least half of the experts are eliminated, i.e., if \hat{y}_{i} made a mistake,

$$
\frac{\mathcal{H}_{i+1}}{\mathcal{H}_{i}} \leq \frac{1}{2} \Rightarrow \frac{\left|\mathcal{H}_{T+1}\right|}{|\mathcal{H}|} \leq \frac{1}{2^{M}} .
$$

- Due to the realizable assumption, we have

$$
1 \leq\left|\mathcal{H}_{T+1}\right| .
$$

- $M=$ Regret .

Remove the Separable Assumption

- The separable assumption is too strong
- Let remove this.
- Then, we need a randomization algorithm.
- One example: Exponential weighting algorithm.

Exponential Weighting Algorithm

```
Algorithm 2 Exponential Weighting Algorithm
    1: \(w_{1} \leftarrow(1 /|\mathcal{H}|, \ldots, 1 /|\mathcal{H}|)\)
    2: for \(t=1, \ldots, T\) do
    3: \(\quad\) Observe \(x_{t}\)
    4: \(\quad\) Predict \(\hat{y}_{t}=h^{i_{t}}\left(x_{t}\right)\), where \(i_{t} \sim w_{t}\)
    5: \(\quad\) Observe \(y_{t}\)
    6: \(\quad\) Update \(w_{t+1}(i) \propto w_{t}(i) \exp \left\{-\eta \ell\left(h^{i}\left(x_{t}\right), y_{t}\right)\right\}\) for all \(i \in\{1, \ldots,|\mathcal{H}|\}\)
    end for
```

- \mathcal{H} : a set of experts
- $\ell(\cdot) \in[0,1]$

Exponential Weighting Algorithm

```
Algorithm 3 Exponential Weighting Algorithm
    1: \(w_{1} \leftarrow(1 /|\mathcal{H}|, \ldots, 1 /|\mathcal{H}|)\)
    2: for \(t=1, \ldots, T\) do
    3: \(\quad\) Observe \(x_{t}\)
    4: \(\quad\) Predict \(\hat{y}_{t}=h^{i_{t}}\left(x_{t}\right)\), where \(i_{t} \sim w_{t}\)
    5: \(\quad\) Observe \(y_{t}\)
    6: \(\quad\) Update \(w_{t+1}(i) \propto w_{t}(i) \exp \left\{-\eta \ell\left(h^{i}\left(x_{t}\right), y_{t}\right)\right\}\) for all \(i \in\{1, \ldots,|\mathcal{H}|\}\)
    end for
```

- \mathcal{H} : a set of experts
- $\ell(\cdot) \in[0,1]$
- Due to the randomization in (4), an adversary cannot completely fool the learner.

Exponential Weighting Algorithm: A Regret Bound

Theorem

For any loss function ℓ with the range of $[0,1]$, we have

$$
\mathbb{E} \text { Regret } \leq \sqrt{T \ln |\mathcal{H}|}
$$

if $\eta=\frac{8 \ln |\mathcal{H}|}{T}$.

- No separable assumption.
- "learnable", i.e., $\frac{\text { Regret }}{T}=\sqrt{\frac{\ln |\mathcal{H |}|}{T}}$ with a mild assumption on loss.
- Still we assume a finite set of experts.

Exponential Weighting Algorithm I

Proof sketch

Definitions:

- $L_{t}^{i}:=\sum_{s=1}^{t} \ell\left(h_{i}\left(x_{s}\right), y_{s}\right)$: the cumulative loss of h_{i} up to t
- $W_{t}:=\sum_{i=1}^{|\mathcal{H}|} \exp \left\{-\eta L_{t}^{i}\right\}:$ a "potential value" at time t
- $W_{0}:=|\mathcal{H}|:$ a "potential value" at time 0

Steps:

(1) The lower bound of the "potential difference":

$$
\ln \frac{W_{T}}{W_{0}}=\ln \sum_{i=1}^{|\mathcal{H}|} \exp \left\{-\eta L_{T}^{i}\right\}-\ln |\mathcal{H}| \geq \ln \left(\max _{i \in\{1, \ldots,|\mathcal{H}|\}} \exp \left\{-\eta L_{T}^{i}\right\}\right)-\ln |\mathcal{H}|=-\eta \min _{i \in\{1, \ldots,|\mathcal{H}|\}} L_{T}^{i}-\ln |\mathcal{H}| .
$$

Exponential Weighting Algorithm II

Proof sketch

(2) The upper bound of the "potential difference":

$$
\begin{aligned}
\ln \frac{W_{t}}{W_{t-1}} & =\ln \frac{\sum_{i=1}^{|\mathcal{H}|} \exp \left\{-\eta L_{t}^{i}\right\}}{\sum_{i=1}^{|\mathcal{H}|} \exp \left\{-\eta L_{t-1}^{i}\right\}}=\ln \frac{\sum_{i=1}^{|\mathcal{H}|} \exp \left\{-\eta \ell\left(h_{t}^{i}\left(x_{t}\right), y_{t}\right)\right\} \exp \left\{-\eta L_{t-1}^{i}\right\}}{\sum_{i=1}^{|\mathcal{H}|} \exp \left\{-\eta L_{t-1}^{i}\right\}} \\
& =\ln \mathbb{E}_{i_{t} \sim w_{t}} \exp \left\{-\eta \ell\left(h^{i_{t}}\left(x_{t}\right), y_{t}\right)\right\} \leq-\eta \mathbb{E}_{i_{t} \sim w_{t}} \ell\left(h^{i_{t}}\left(x_{t}\right), y_{t}\right)+\frac{\eta^{2}}{8} \\
\Rightarrow \ln \frac{W_{T}}{W_{0}} & \leq-\eta \sum_{t=1}^{T} \mathbb{E}_{i_{t} \sim w_{t}} \ell\left(h^{i_{t}}\left(x_{t}\right), y_{t}\right)+\frac{\eta^{2} T}{8}
\end{aligned}
$$

- For any $s \in \mathbb{R}$ and a random variable $X \in[a, b], \ln \mathbb{E} e^{s X} \leq s \mathbb{E} X+\frac{s^{2}(b-a)^{2}}{8}$.

Exponential Weighting Algorithm III

Proof sketch

(3) Combine the lower and upper bounds:

$$
\begin{aligned}
&-\eta \min _{i \in\{1, \ldots,|\mathcal{H}|\}} L_{T}^{i}-\ln |\mathcal{H}| \leq-\eta \sum_{t=1}^{T} \mathbb{E}_{i_{t} \sim w_{t} \ell} \ell\left(h^{i_{t}}\left(x_{t}\right), y_{t}\right)+\frac{\eta^{2} T}{8} \Rightarrow \\
& \sum_{t=1}^{T} \mathbb{E}_{i_{t} \sim w_{t}} \ell\left(h^{i_{t}}\left(x_{t}\right), y_{t}\right)-\min _{i \in\{1, \ldots,|\mathcal{H}|\}} L_{T}^{i} \leq \frac{\eta T}{8}+\frac{\ln |\mathcal{H}|}{\eta}
\end{aligned}
$$

Algorithms So Far

- Halving Algorithm
- Deterministic
- Separable assumption
- Finite \mathcal{H}

Algorithms So Far

- Halving Algorithm
- Deterministic
- Separable assumption
- Finite \mathcal{H}
- Exponential Weighting Algorithm
- Randomized
- No separable assumption
- Finite \mathcal{H}

Algorithms So Far

- Halving Algorithm
- Deterministic
- Separable assumption
- Finite \mathcal{H}
- Exponential Weighting Algorithm
- Randomized
- No separable assumption
- Finite \mathcal{H}
- What's the next?

Algorithms So Far

- Halving Algorithm
- Deterministic
- Separable assumption
- Finite \mathcal{H}
- Exponential Weighting Algorithm
- Randomized
- No separable assumption
- Finite \mathcal{H}
- What's the next?
- Remove the assumption on the finiteness of \mathcal{H} (under some assumptions)

Algorithms So Far

- Halving Algorithm
- Deterministic
- Separable assumption
- Finite \mathcal{H}
- Exponential Weighting Algorithm
- Randomized
- No separable assumption
- Finite \mathcal{H}
- What's the next?
- Remove the assumption on the finiteness of \mathcal{H} (under some assumptions)
- Deterministic
- Separable assumption (with some margin)
- Infinite \mathcal{H}

Perceptron: History

TLDR: Father of Neural Networks!

(a) Perceptron

(b) Mark I Perceptron machine

- Invented in 1943 by Warren McCulloch and Walter Pitts.
- Firstly implemented in 1958 by Frank Rosenblatt(!)

Perceptron Algorithm: Setup

- \mathcal{D} : change over time but require the separable assumption.
- \mathcal{H} : linear functions without bias terms - additional assumption
- ℓ : 0-1 loss for classification

Perceptron Algorithm

```
Algorithm 4 Perceptron Algorithm
    1: \(w_{1} \leftarrow w_{0}:=0\)
    2: for \(t=1, \ldots, T\) do
    3: \(\quad\) Receives an example \(x_{t} \in \mathcal{X}\)
    4: \(\quad \hat{y}_{t} \leftarrow \operatorname{sign}\left(w_{t} \cdot x_{t}\right)\)
    5: \(\quad\) Receives a true label \(y_{t} \in \mathcal{Y}\)
    6: \(\quad\) if \(\hat{y}_{t} \neq y_{t}\) then
            \(w_{t+1} \leftarrow w_{t}+y_{t} x_{t}\)
        else
            \(w_{t+1} \leftarrow w_{t}\)
        end if
    end for
```


Perceptron Algorithm: A Regret Bound

Theorem

Suppose $\left\|x_{t}\right\| \leq r$ for all t and for some r and there exists $\gamma>0$ and $v \in \mathbb{R}^{d}$ such that

$$
\gamma \leq \frac{y_{t}\left(v \cdot x_{t}\right)}{\|v\|}
$$

Then, we have

$$
\text { Regret } \leq \frac{r^{2}}{\gamma^{2}}
$$

Perceptron Algorithm: A Regret Bound

Theorem

Suppose $\left\|x_{t}\right\| \leq r$ for all t and for some r and there exists $\gamma>0$ and $v \in \mathbb{R}^{d}$ such that

$$
\gamma \leq \frac{y_{t}\left(v \cdot x_{t}\right)}{\|v\|}
$$

Then, we have

$$
\text { Regret } \leq \frac{r^{2}}{\gamma^{2}}
$$

- Assumption: separable with some margin

Perceptron Algorithm: A Regret Bound

Theorem

Suppose $\left\|x_{t}\right\| \leq r$ for all t and for some r and there exists $\gamma>0$ and $v \in \mathbb{R}^{d}$ such that

$$
\gamma \leq \frac{y_{t}\left(v \cdot x_{t}\right)}{\|v\|}
$$

Then, we have

$$
\text { Regret } \leq \frac{r^{2}}{\gamma^{2}}
$$

- Assumption: separable with some margin
- The bound does not depend on T

Perceptron Algorithm: A Proof Sketch

- Let $\mathcal{J} \subseteq\{1, \ldots, T\}$ be the set of time indices when updated.
- Thus, Regret $=|\mathcal{J}|$.
- From the "margin" assumption,

$$
\begin{align*}
\gamma \text { Regret } & \leq \frac{\sum_{t \in \mathcal{J}} y_{t}\left(v \cdot x_{t}\right)}{\|v\|}=\frac{v \cdot \sum_{t \in \mathcal{J}} y_{t} x_{t}}{\|v\|} \\
& \leq\left\|\sum_{t \in \mathcal{J}} y_{t} x_{t}\right\| \tag{1}\\
& =\left\|\sum_{t \in \mathcal{J}} w_{t+1}-w_{t}\right\|=\left\|w_{T+1}\right\| \\
& =\sqrt{\sum_{t \in \mathcal{J}}\left\|w_{t+1}\right\|^{2}-\left\|w_{t}\right\|^{2}}=\sqrt{\sum_{t \in \mathcal{J}}\left\|w_{t}+y_{t} x_{t}\right\|^{2}-\left\|w_{t}\right\|^{2}}=\sqrt{\sum_{t \in \mathcal{J}} 2 y_{t} w_{t} \cdot x_{t}+\left\|x_{t}\right\|^{2}} \\
& \leq \sqrt{\sum_{t \in \mathcal{J}}\left\|x_{t}\right\|^{2}} \leq r \sqrt{\text { Regret. }}
\end{align*}
$$

- (1): Cauchy-Schwarz inequality, i.e., $u \cdot v \leq\|u\|\|v\|$

Conclusion

- What we learned
- Halving Algorithm
* Deterministic
\star Separable assumption
\star Finite \mathcal{H}
- Exponential Weighting Algorithm
* Randomized
\star No separable assumption
\star Finite \mathcal{H}
- Perceptron Algorithm
* Deterministic
* Separable assumption
* Infinite \mathcal{H}
- Interesting materials
- Online convex optimization
- Stochastic bandits
- Adversarial bandits

