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o (I guess) The first DP paper for deep learning

@ This is a complicated application of the basic DP, so we will briefly see high-level ideas.
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Difference?

@ DP with convex loss

» Add noise on the final model
» Add noise before learning
» Strategies in convex loss treat learning process as a block box

@ DP with non-convex loss

» Consider learning process as a white box for the careful(?) characterization of parameter
updates.
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Definition: Differential Privacy (Again)

Definition
A randomized mechanism M : D — R with domain D and range R satisfies (e, §)-differential

privacy if for any two “adjacent” inputs d,d’ € D and for any subset of outputs S C R it
holds that

P {M(d) € S} < P {M(d) € S} + 6.

o Notations are slightly adjusted for learning.

@ “adjacent” inputs: two inputs differ in a single labeled example.
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A Toy Example

Alice has cancer
Tom has diabetes

, Prob(M(d’, “Bob has”) = “Cancer”)

Alice has cancer
Tom has diabetes
Bob has cancer

@ Here, the mechanism M includes training an LLM over a dataset and querying a question.
@ At least we know that d’ has Bob's information (and he likely has cancer due to the high

confidence).
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Differentially Private SGD (DP-SGD)

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {zi,...,zn}, loss function L£(0) =
+ 3, £(0,x;). Parameters: learning rate 7:, noise scale
o, group size L, gradient norm bound C.

Initialize 6, randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € Ly, compute g¢(z:) + Vo, L(0:, xi)
Clip gradient
g:(wi) < gi(z:)/ max (1’ ng(gi)llz)
Add noise
& « + (3, 8i(zi) + N(0,0°C°T))
Descent
Orp1 < 0 — 8t
Output 0r and compute the overall privacy cost (e, )
using a privacy accounting method.
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o My(d) :=3cr, 8(x:) + N(0,02°C?I): the Gaussian mechanism (when d := L;)
@ Why clipping?

@ How to determine the noise level o to satisfy (¢,d)-DP?
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Main Ingredient: Norm Clipping
Norm Clipping

- Z;
Bi(:) gt(l )(zon
max (1, gtc’ 2)

@ Maintain the norm of gradients to be at most C, i.e,,

g _Je if gl < C
) g iflel>C
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Main Ingredient: Norm Clipping

Norm Clipping
T
gi(zi) < - (1 le:(e z)llz)

@ Maintain the norm of gradients to be at most C, i.e,,

& _]8 if gl < C
max (1,1852) ~ |8 Il >

@ Limit “privacy loss” at each learning iteration for a tighter the DP guarantee

> If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,

privacy leaking)
» Without clipping, we need to add noise proportional to the largest norm of gradients.

» With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.
» Price to pay: clipping may hurt accuracy
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@ Maintain the norm of gradients to be at most C, i.e,,
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max (1,1852) ~ |8 Il >

@ Limit “privacy loss” at each learning iteration for a tighter the DP guarantee

> If the norm of gradients is “large”, we need to add “large” noise to cover them (otherwise,

privacy leaking)
» Without clipping, we need to add noise proportional to the largest norm of gradients.

» With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.
» Price to pay: clipping may hurt accuracy

o Clipping before averaging
» may provide a tighter DP guarantee (why?) )
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Privacy Analysis: Is DP-SGD DP?

To this end, bound the moments of privacy loss in two steps!
© Bounding the moment for each learning iteration

@ Bounding the moments for all learning iterations

Then, what is
@ privacy loss? An surrogate for measuring DP.

@ the moments of the privacy loss?
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Measuring DP: Privacy Loss

Privacy Loss

P {M(aux,d) = o}

l(o; M, aux, d,d') = log P {M(aux, &) = o]

d,d" € D: neighboring datasets
M: a mechanism
aux: an auxiliary input, e.g., previous gradients

0 € R: an outcome

How to capture the properties of the privacy loss?

» Consider o as a random variable, i.e., o0 ~ M(aux,d).
> Analyze the privacy loss via moments.
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Measuring DP: Moments of Privacy Loss

Moment

am(N) = max, am(N;aux,d,d’) where

. !/
am(N;aux,d,d') = In ]EONM(auw)e)‘Z(O’M’aux’d’d )
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Measuring DP: Moments of Privacy Loss

Moment

am(\) = max apy();aux,d,d’) where
aux,d,d’
am(N;aux,d,d') = In ]EONM(au&d)eM(";M’aux’d’d)
e The moment-generating function (or moments) of a real-valued random variable X,
denoted by Mx (), captures the useful properties of the corresponding distribution.

Mx(\) = E{eM}

A2X2  A3Xx3
:E{1+)\X+ o T 3 +}
NE{X? ME{X?
1 AE{X) + 2{| ! ; by

» To obtain mean, differentiating Mx (\) once with respect to A\ and setting A\ = 0.
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From the Moments to the DP Guarantee

Theorem
For any € > 0, the mechanism M is (g,9)-DP where

§ = min e@MPM) e,
A

e Connect (g,0)-DP to ap(N)
e Given 4, if we know the moments ar((\), the privacy parameter ¢ is determined.

@ How to compute or bound ()7
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From the Moments to the DP Guarantee: A Proof Sketch
@ Recall the privacy loss /¢

P {M(aux,d) = o}

P {M(aux,d") = o}

l(0; M, aux,d,d) = In
o Let an (bad) event B :=={(0;-) > ¢
e For any S, we have
P{M(d) € S} =P {M(d) € SN B} + P {M(d) € SN B}
<P {M(d) e SNB°} + P{M(d) € SN B}
<P {M(d) € S} + P{M(d) € B}
< e P {M(d/ € S} + eomN)—Ae

Here, the last inequality holds since

0;- EONM d {e )} a _
ow./\/l {ﬁ( ) > E} = IPONM(d) {ex\f( ) > 6)‘5} < (e))\e <e MmN )\a’

where the first inequality holds due to the Markov's inequality and the last inequality holds due

to the definition of apg. 1218



Back to Mechanisms in DP-SGD

One-step Mechanism

My(d) =Y gi(z;) + N(0,0°C?I)

i€ Ly

@ This is the Gaussian mechanism along with sampling from d to get L;.

@ It is DP (see Lemma 3 in this paper).
@ However, this is a mechanism for at a given time step.

Multi-step Mechanism
T

M(d) o Z(—Wt)Mt(d)

t=1

o Recall the DP-SGD update rule, i.e., 07 < 6y + S 1, (—n:) M (d)
@ This is the composition of the Gaussian mechanisms.
e Is it DP?
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Composibility Theorem
Theorem

Suppose that a mechanism M consists of a sequence of adaptive mechanisms,
e, M= (Mj,...,. Mrp), where My : Ry X -+ X Ry—1 X D — Ry. Then, for any A >0

T
amN) < 3 an, (V)
i=ll

o “Adaptive” mechanism: a mechanism that depends on all previous mechanisms
auxy = M;j(auxy,d)

auxs = MQ(aUXQ, d) = MZ(Ml(auxlv d)? d)

o M: e.g., T-step gradient aggregation
@ Mjy: e.g., one-step gradient aggregation
@ This theorem shares similar philosophy as a union bound.
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Main DP Theorem for DP-SGD

Theorem

There exist constants ¢y and ca so that given the sampling probability ¢ = L/N and the
number of steps T, for any € < c1¢*T, Algorithm 1 is (e, )-differentially private for any § > 0

if we choose
g/ Tlogl/é

€

UZCQ

@ Provide intuition on tuning nobs.
@ ¢ o T privacy-accuracy trade-off

@ With the known “strong composition” (i.e., a baseline), we need

9

. (qﬂ 1og<1/5>log<T/6>)

» This is one without clipping.
» This difference will be justified in experiments.
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Practical Guideline to Compute ¢

@ The moments bound: .
am(N) <D ar (V)
i=1
o For the Gaussian mechanism with random sampling

am, () < (computable upper bound)

» See the paper for details.

@ From the “Moment-DP" theorem, M is (g,6)-DP if

min e*MMN A < min eXim1 am; (M= <.
A

» The above assumes that we can compute aq, (+) exactly.
» If T, q,0, and § are given and conduct greedy search over ¢ (and solving min) via greedy
search) to find the minimum e.
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(Proposed) Moments Accountant v.s. (Standard) Strong Composition
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Figure 2: The ¢ value as a function of epoch E for

¢=0.01,0 =4, § = 107°, using the strong composition
theorem and the moments accountant respectively.
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Figure 2: The ¢ value as a function of epoch E for

¢=0.01,0 =4, § = 107°, using the strong composition
theorem and the moments accountant respectively.

@ How about the comparison of model accuracy? Clipping may hurt accuracy.
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Conclusion

@ The proposed “Moments Accountant” has a stronger DP guarantee.
» Why? partially due to practical treatments on clipping

@ Nice connection between a moments bound and the DP guarantee.
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