Trustworthy Machine Learning

Differential Privacy 2

Sangdon Park

POSTECH

Contents from

A preliminary version of this paper appears in the proceedings of the 23rd ACM Conference on Computer and Communications Security (CCS 2016). This is a full version.

Deep Learning with Differential Privacy

October 25, 2016

Martín Abadi* H. Brendan McMahan* Andy Chu*
Ilya Mironov*
Li Zhang*

Ian Goodfellow[†] Kunal Talwar^{*}

- (I guess) The first DP paper for deep learning
- This is a complicated application of the basic DP, so we will briefly see high-level ideas.

Difference?

- DP with convex loss
 - Add noise on the final model
 - Add noise before learning
 - ► Strategies in convex loss treat learning process as a block box
- DP with non-convex loss
 - Consider learning process as a white box for the careful(?) characterization of parameter updates.

Definition: Differential Privacy (Again)

Definition

A randomized mechanism $\mathcal{M}:\mathcal{D}\to\mathcal{R}$ with domain \mathcal{D} and range \mathcal{R} satisfies (ε,δ) -differential privacy if for any two "adjacent" inputs $d,d'\in\mathcal{D}$ and for any subset of outputs $S\subseteq\mathcal{R}$ it holds that

$$\mathbb{P}\left\{\mathcal{M}(d) \in S\right\} \le e^{\varepsilon} \mathbb{P}\left\{\mathcal{M}(d') \in S\right\} + \delta.$$

- Notations are slightly adjusted for learning.
- "adjacent" inputs: two inputs differ in a single labeled example.

A Toy Example

- \bullet Here, the mechanism ${\cal M}$ includes training an LLM over a dataset and querying a question.
- At least we know that d' has Bob's information (and he likely has cancer due to the high confidence).

Algorithm 1 Differentially private SGD (Outline)

```
Input: Examples \{x_1, \ldots, x_N\}, loss function \mathcal{L}(\theta)
   \frac{1}{N}\sum_{i}\mathcal{L}(\theta,x_{i}). Parameters: learning rate \eta_{t}, noise scale
   \sigma, group size L, gradient norm bound C.
   Initialize \theta_0 randomly
   for t \in [T] do
       Take a random sample L_t with sampling probability
       L/N
       Compute gradient
       For each i \in L_t, compute \mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)
       Clip gradient
       \bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)
       Add noise
       \tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left( \sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)
       Descent
       \theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t
   Output \theta_T and compute the overall privacy cost (\varepsilon, \delta)
   using a privacy accounting method.
```

```
Algorithm 1 Differentially private SGD (Outline)
Input: Examples \{x_1, \ldots, x_N\}, loss function \mathcal{L}(\theta)
   \frac{1}{N}\sum_{i}\mathcal{L}(\theta,x_{i}). Parameters: learning rate \eta_{t}, noise scale
   \sigma, group size L, gradient norm bound C.
   Initialize \theta_0 randomly
   for t \in [T] do
      Take a random sample L_t with sampling probability
      L/N
      Compute gradient
      For each i \in L_t, compute \mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)
      Clip gradient
      \bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)
      Add noise
      \tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left( \sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)
      Descent
      \theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t
   Output \theta_T and compute the overall privacy cost (\varepsilon, \delta)
   using a privacy accounting method.
```

• $\mathcal{M}_t(d) \coloneqq \sum_{i \in L_t} \tilde{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 I)$: the Gaussian mechanism (when $d \coloneqq L_t$)

```
Algorithm 1 Differentially private SGD (Outline)
```

```
Input: Examples \{x_1, \ldots, x_N\}, loss function \mathcal{L}(\theta)
    \frac{1}{N}\sum_{i}\mathcal{L}(\theta,x_{i}). Parameters: learning rate \eta_{t}, noise scale
   \sigma, group size L, gradient norm bound C.
   Initialize \theta_0 randomly
   for t \in [T] do
       Take a random sample L_t with sampling probability
       L/N
       Compute gradient
       For each i \in L_t, compute \mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)
       Clip gradient
       \bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)
       Add noise
       \tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left( \sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)
       Descent
       \theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t
   Output \theta_T and compute the overall privacy cost (\varepsilon, \delta)
   using a privacy accounting method.
```

- $\mathcal{M}_t(d) \coloneqq \sum_{i \in L_t} \tilde{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 I)$: the Gaussian mechanism (when $d \coloneqq L_t$)
- Why clipping?

```
Algorithm 1 Differentially private SGD (Outline)
```

```
Input: Examples \{x_1, \ldots, x_N\}, loss function \mathcal{L}(\theta)
    \frac{1}{N}\sum_{i}\mathcal{L}(\theta,x_{i}). Parameters: learning rate \eta_{t}, noise scale
   \sigma, group size L, gradient norm bound C.
   Initialize \theta_0 randomly
   for t \in [T] do
       Take a random sample L_t with sampling probability
       L/N
       Compute gradient
       For each i \in L_t, compute \mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)
       Clip gradient
       \bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)
       Add noise
       \tilde{\mathbf{g}}_t \leftarrow \frac{1}{L} \left( \sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)
       Descent
       \theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t
   Output \theta_T and compute the overall privacy cost (\varepsilon, \delta)
   using a privacy accounting method.
```

- $\mathcal{M}_t(d) := \sum_{i \in L_t} \tilde{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 I)$: the Gaussian mechanism (when $d := L_t$)
- Why clipping?
- How to determine the noise level σ to satisfy (ε, δ) -DP?

Main Ingredient: Norm Clipping

Norm Clipping

$$\tilde{\mathbf{g}}_t(x_i) \leftarrow \frac{\mathbf{g}_t(x_i)}{\max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)}$$

• Maintain the norm of gradients to be at most C, i.e.,

$$\frac{\mathbf{g}}{\max\left(1, \frac{\|\mathbf{g}\|_2}{C}\right)} = \begin{cases} \mathbf{g} & \text{if } \|\mathbf{g}\|_2 \le C\\ \frac{C}{\|\mathbf{g}\|_2} \mathbf{g} & \text{if } \|\mathbf{g}\|_2 > C \end{cases}$$

Main Ingredient: Norm Clipping

Norm Clipping

$$\tilde{\mathbf{g}}_t(x_i) \leftarrow \frac{\mathbf{g}_t(x_i)}{\max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)}$$

• Maintain the norm of gradients to be at most C, i.e.,

$$\frac{\mathbf{g}}{\max\left(1, \frac{\|\mathbf{g}\|_2}{C}\right)} = \begin{cases} \mathbf{g} & \text{if } \|\mathbf{g}\|_2 \le C\\ \frac{C}{\|\mathbf{g}\|_2} \mathbf{g} & \text{if } \|\mathbf{g}\|_2 > C \end{cases}$$

- Limit "privacy loss" at each learning iteration for a tighter the DP guarantee
 - ▶ If the norm of gradients is "large", we need to add "large" noise to cover them (otherwise, privacy leaking)
 - ▶ Without clipping, we need to add noise proportional to the largest norm of gradients.
 - ▶ With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.
 - Price to pay: clipping may hurt accuracy

Main Ingredient: Norm Clipping

Norm Clipping

$$\tilde{\mathbf{g}}_t(x_i) \leftarrow \frac{\mathbf{g}_t(x_i)}{\max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)}$$

• Maintain the norm of gradients to be at most C, i.e.,

$$\frac{\mathbf{g}}{\max\left(1, \frac{\|\mathbf{g}\|_2}{C}\right)} = \begin{cases} \mathbf{g} & \text{if } \|\mathbf{g}\|_2 \le C\\ \frac{C}{\|\mathbf{g}\|_2} \mathbf{g} & \text{if } \|\mathbf{g}\|_2 > C \end{cases}$$

- Limit "privacy loss" at each learning iteration for a tighter the DP guarantee
 - ▶ If the norm of gradients is "large", we need to add "large" noise to cover them (otherwise, privacy leaking)
 - ▶ Without clipping, we need to add noise proportional to the largest norm of gradients.
 - ▶ With clipping, (as we control the maximum of the norm) we can choose a smaller noise level.
 - Price to pay: clipping may hurt accuracy
- Clipping before averaging
 - may provide a tighter DP guarantee (why?)

Privacy Analysis: Is DP-SGD DP?

To this end, bound the *moments* of *privacy loss* in two steps!

- Bounding the moment for each learning iteration
- Bounding the moments for all learning iterations

Then, what is

- privacy loss? An surrogate for measuring DP.
- the moments of the privacy loss?

Measuring DP: Privacy Loss

Privacy Loss

$$\ell(o; \mathcal{M}, \mathsf{aux}, d, d') \coloneqq \log \frac{\mathbb{P}\left\{\mathcal{M}(\mathsf{aux}, d) = o\right\}}{\mathbb{P}\left\{\mathcal{M}(\mathsf{aux}, d') = o\right\}}$$

- $d, d' \in \mathcal{D}$: neighboring datasets
- M: a mechanism
- aux: an auxiliary input, e.g., previous gradients
- $o \in \mathcal{R}$: an outcome
- How to capture the properties of the privacy loss?
 - ► Consider o as a random variable, *i.e.*, $o \sim \mathcal{M}(\mathbf{aux}, d)$.
 - Analyze the privacy loss via moments.

Measuring DP: Moments of Privacy Loss

Moment

$$\alpha_{\mathcal{M}}(\lambda) = \max_{\mathtt{aux},d,d'} \alpha_{\mathcal{M}}(\lambda;\mathtt{aux},d,d') \quad \text{where}$$

$$\alpha_{\mathcal{M}}(\lambda;\mathtt{aux},d,d') \coloneqq \ln \mathbb{E}_{o \sim \mathcal{M}(\mathtt{aux},d)} e^{\lambda \ell(o;\mathcal{M},\mathtt{aux},d,d')}$$

$$lpha_{\mathcal{M}}(\lambda; \mathtt{aux}, d, d') \coloneqq \ln \mathbb{E}_{o \sim \mathcal{M}(\mathtt{aux}, d)} e^{\lambda \ell(o; \mathcal{M}, \mathtt{aux}, d, d')}$$

Measuring DP: Moments of Privacy Loss

Moment

$$\alpha_{\mathcal{M}}(\lambda) = \max_{\mathsf{aux},d,d'} \alpha_{\mathcal{M}}(\lambda; \mathsf{aux},d,d') \quad \text{where}$$

$$\alpha_{\mathcal{M}}(\lambda; \mathsf{aux},d,d') \coloneqq \ln \mathbb{E}_{o \sim \mathcal{M}(\mathsf{aux},d)} e^{\lambda \ell(o;\mathcal{M},\mathsf{aux},d,d')}$$

• The moment-generating function (or moments) of a real-valued random variable X, denoted by $M_X(\lambda)$, captures the useful properties of the corresponding distribution.

$$M_X(\lambda) := \mathbb{E}\{e^{\lambda X}\}\$$

$$= \mathbb{E}\left\{1 + \lambda X + \frac{\lambda^2 X^2}{2!} + \frac{\lambda^3 X^3}{3!} + \cdots\right\}\$$

$$= 1 + \lambda \mathbb{E}\{X\} + \frac{\lambda^2 \mathbb{E}\{X^2\}}{2!} + \frac{\lambda^3 \mathbb{E}\{X^3\}}{3!} + \cdots$$

▶ To obtain mean, differentiating $M_X(\lambda)$ once with respect to λ and setting $\lambda = 0$.

From the Moments to the DP Guarantee

Theorem

For any $\varepsilon > 0$, the mechanism \mathcal{M} is (ε, δ) -DP where

$$\delta = \min_{\lambda} e^{\alpha_{\mathcal{M}}(\lambda) - \lambda \varepsilon}.$$

- Connect (ε, δ) -DP to $\alpha_{\mathcal{M}}(\lambda)$
- Given δ , if we know the moments $\alpha_{\mathcal{M}}(\lambda)$, the privacy parameter ε is determined.
- How to compute or bound $\alpha_{\mathcal{M}}(\lambda)$?

From the Moments to the DP Guarantee: A Proof Sketch

ullet Recall the privacy loss ℓ

$$\ell(o; \mathcal{M}, \mathsf{aux}, d, d') \coloneqq \ln \frac{\mathbb{P}\left\{\mathcal{M}(\mathsf{aux}, d) = o\right\}}{\mathbb{P}\left\{\mathcal{M}(\mathsf{aux}, d') = o\right\}}$$

- Let an (bad) event $B := \ell(o; \cdot) > \varepsilon$
- \bullet For any S, we have

$$\mathbb{P} \{ \mathcal{M}(d) \in S \} = \mathbb{P} \{ \mathcal{M}(d) \in S \cap B^c \} + \mathbb{P} \{ \mathcal{M}(d) \in S \cap B \}
\leq e^{\varepsilon} \mathbb{P} \{ \mathcal{M}(d') \in S \cap B^c \} + \mathbb{P} \{ \mathcal{M}(d) \in S \cap B \}
\leq e^{\varepsilon} \mathbb{P} \{ \mathcal{M}(d') \in S \} + \mathbb{P} \{ \mathcal{M}(d) \in B \}
\leq e^{\varepsilon} \mathbb{P} \{ \mathcal{M}(d') \in S \} + e^{\alpha_{\mathcal{M}}(\lambda) - \lambda_{\varepsilon}},$$

Here, the last inequality holds since

$$\mathbb{P}_{o \sim \mathcal{M}(d)} \left\{ \ell(o; \cdot) \geq \varepsilon \right\} = \mathbb{P}_{o \sim \mathcal{M}(d)} \left\{ e^{\lambda \ell(o; \cdot)} \geq e^{\lambda \varepsilon} \right\} \leq \frac{\mathbb{E}_{o \sim \mathcal{M}(d)} \left\{ e^{\lambda \ell(o; \cdot)} \right\}}{e^{\lambda \varepsilon}} \leq e^{\alpha_{\mathcal{M}}(\lambda) - \lambda \varepsilon},$$

where the first inequality holds due to the Markov's inequality and the last inequality holds due to the definition of $\alpha_{\mathcal{M}}$.

Back to Mechanisms in DP-SGD

One-step Mechanism

$$\mathcal{M}_t(d) := \sum_{i \in L_t} \tilde{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 I)$$

- This is the Gaussian mechanism along with sampling from d to get L_t .
- It is DP (see Lemma 3 in this paper).
- However, this is a mechanism for at a given time step.

Multi-step Mechanism

$$\mathcal{M}(d) \propto \sum_{t=1}^{T} (-\eta_t) \mathcal{M}_t(d)$$

- Recall the DP-SGD update rule, i.e., $\theta_T \leftarrow \theta_0 + \sum_{t=1}^T (-\eta_t) \mathcal{M}_t(d)$
- This is the composition of the Gaussian mechanisms.
- Is it DP?

Composibility Theorem

Theorem

Suppose that a mechanism \mathcal{M} consists of a sequence of adaptive mechanisms, i.e., $\mathcal{M} \coloneqq (\mathcal{M}_1, \dots, \mathcal{M}_T)$, where $\mathcal{M}_t : \mathcal{R}_1 \times \dots \times \mathcal{R}_{t-1} \times \mathcal{D} \to \mathcal{R}_t$. Then, for any $\lambda > 0$

$$\alpha_{\mathcal{M}}(\lambda) \le \sum_{t=1}^{T} \alpha_{\mathcal{M}_t}(\lambda)$$

"Adaptive" mechanism: a mechanism that depends on all previous mechanisms

$$\mathbf{aux}_2 = \mathcal{M}_1(\mathbf{aux}_1, d)$$
 $\mathbf{aux}_3 = \mathcal{M}_2(\mathbf{aux}_2, d) = \mathcal{M}_2(\mathcal{M}_1(\mathbf{aux}_1, d), d)$
...

- M: e.g., T-step gradient aggregation
- \mathcal{M}_t : e.g., one-step gradient aggregation
- This theorem shares similar philosophy as a union bound.

Main DP Theorem for DP-SGD

Theorem

There exist constants c_1 and c_2 so that given the sampling probability q = L/N and the number of steps T, for any $\varepsilon < c_1 q^2 T$, Algorithm 1 is (ε, δ) -differentially private for any $\delta > 0$ if we choose

$$\sigma \ge c_2 \frac{q\sqrt{T\log 1/\delta}}{\varepsilon}$$

- Provide intuition on tuning nobs.
- $\varepsilon \propto T$: privacy-accuracy trade-off
- With the known "strong composition" (i.e., a baseline), we need

$$\sigma = \Omega\left(\frac{q\sqrt{T\log(1/\delta)\log(T/\delta)}}{\varepsilon}\right)$$

- ▶ This is one without clipping.
- ▶ This difference will be justified in experiments.

Practical Guideline to Compute ε

• The moments bound:

$$\alpha_{\mathcal{M}}(\lambda) \le \sum_{i=1}^{T} \alpha_{\mathcal{M}_i}(\lambda)$$

• For the Gaussian mechanism with random sampling

$$\alpha_{\mathcal{M}_i}(\lambda) \leq (\text{computable upper bound})$$

- See the paper for details.
- From the "Moment-DP" theorem, \mathcal{M} is (ε, δ) -DP if

$$\min_{\lambda} e^{\alpha_{\mathcal{M}}(\lambda) - \lambda \varepsilon} \le \min_{\lambda} e^{\sum_{i=1}^{T} \alpha_{\mathcal{M}_i}(\lambda) - \lambda \varepsilon} \le \delta.$$

- ▶ The above assumes that we can compute $\alpha_{\mathcal{M}_i}(\cdot)$ exactly.
- If T, q, σ , and δ are given and conduct greedy search over ε (and solving \min_{λ} via greedy search) to find the minimum ε .

(Proposed) Moments Accountant v.s. (Standard) Strong Composition

Figure 2: The ε value as a function of epoch E for q=0.01, $\sigma=4$, $\delta=10^{-5}$, using the strong composition theorem and the moments accountant respectively.

(Proposed) Moments Accountant v.s. (Standard) Strong Composition

Figure 2: The ε value as a function of epoch E for q=0.01, $\sigma=4$, $\delta=10^{-5}$, using the strong composition theorem and the moments accountant respectively.

• How about the comparison of model accuracy? Clipping may hurt accuracy.

Conclusion

- The proposed "Moments Accountant" has a stronger DP guarantee.
 - ▶ Why? partially due to practical treatments on clipping
- Nice connection between a moments bound and the DP guarantee.