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Why Privacy Guarantees in Learning?

@ Not anonymized dataset for learning — privacy leak
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Why Privacy Guarantees in Learning?

@ Not anonymized dataset for learning — privacy leak

@ Anonymized dataset for learning — looks okay but possible to leak private information
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Why Privacy Guarantees in Learning?

Anonymized Dataset

Name Age Gender Zip Code  Smoker Diagnosis

* 60-70 Male 191** B § Heart disease

i 60-70 Female 191** N Arthritis

s 60-70  Male 191** Y Lung cancer

» 60-70 Female 191** N Crohn’s disease

> 60-70 Male 191** Y Lung cancer

i 50-60  Female 191** N HIV

o 50-60  Male 191** 4 Lyme disease

i 50-60  Male 191 Y Seasonal allergies
i 50-60  Female 191** N Ulcerative colitis

Figure: An example from Kearns & Roth, The Ethical Algorithm

@ anonymized dataset — looks okay but still privacy leak

> If we know Rebecca is 55 years old and in this database, then we know she has 1 of 2

diseases.
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Why Not Use Cryptosystems?
Set-up for Encryption

Encrypt Dencrypt N
Sender Reciever

I

Adversary

@ Entities in encryption: Sender, Receiver, and Adversary

Set-up for Private Learning

Sender Reciever =
(=curator) Adversary
(=analyst)

@ e.g., a learning algorithm (=curator) releases a model for some “benefits”

@ But, the model should not reveal private information.
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Why Not Use Cryptosystems?
Set-up for Encryption

Encrypt Dencrypt N
Sender Reciever

I

Adversary

@ Entities in encryption: Sender, Receiver, and Adversary

Set-up for Private Learning

Sender Reciever =
(=curator) Adversary
(=analyst)

@ e.g., a learning algorithm (=curator) releases a model for some “benefits”

@ But, the model should not reveal private information.

@ Note that homomorphic encryption could be alternatives but slow (yet)
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Goal for Privacy In Learning

Goal

Learning nothing about an individual while learning useful information about a population.

@ How to achieve this goal? Add noise!
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Goal for Privacy In Learning

Goal

Learning nothing about an individual while learning useful information about a population.

@ How to achieve this goal? Add noise!
@ In the learning context,

> Here, an algorithm can transform a dataset into another dataset
» Sender: an algorithm that releases a model
> Reciever: A model user
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Randomized Response
An Example

Goal of A Survey
Estimate a statistic on illegal behaviors of participants, where
o Curator: a participant

@ Analyst: a researcher

7/25



Randomized Response
An Example

Goal of A Survey
Estimate a statistic on illegal behaviors of participants, where
o Curator: a participant

@ Analyst: a researcher

@ Each participant follows the following survey process:
@ Flip a coin
@ If “tails”, then respond truthfully.
© If "heads”, then flip a second coin and respond “Yes" if “heads” and “No” if “tails”.
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Randomized Response

General Description

Randomized Response

+7

{Xl- with probability
1; p—
g

1—X; with probability

N[ N[

X; € {0,1}: the truthful response
Y; € {0,1}: a randomized response
~v = 0: a uniformly random strategy
v/ private
X not informative
~v = 1/2: an honest strategy
X no privacy
v/ informative
~v = 1/4: the previous example.
v/ private — no learning on an individual response
v informative — learning on a population statistic
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Randomized Response

How Informative?

Randomized Response

Y, = {Xi with probability

1 —X; with probability

+7
)

N[ N[

@ How to estimate p = Ep{X;}? — Let X; ~ P and Q is a distribution over

“unfair coin flips”.
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Randomized Response

How Informative?

Randomized Response
X; with probability
1 —X; with probability

+7
)

Y; =

N[ N[

@ How to estimate p = Ep{X;}? — Let X; ~ P and Q is a distribution over “unfair coin flips”.

@ Observe the following expectation over “unfair coin flips”:

1 1 1 1 1
Eo{Vi} =X, (= 1—X)[=—~)=29Xi+ = — X;=Fod — (V- =
o{Yi} (2+7>+( )(2 7) it g -1 = 9{27< 2+7)}
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Randomized Response

How Informative?

Randomized Response
X; with probability
1 —X; with probability

+7
)

Y; =

N[ N[

@ How to estimate p = Ep{X;}? — Let X; ~ P and Q is a distribution over “unfair coin flips”.

@ Observe the following expectation over “unfair coin flips”:

1 1 1 1 1
Eo{Vi} =X, (= 1—X)[=—~)=29Xi+ = — X;=Fod — (V- =
o{Yi} (2+7>+( )(2 7) it g -1 = 9{27< 2+7)}

@ Consider the following estimator:
P 1 1
G (1)
n =1
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Randomized Response

How Informative?

Randomized Response

v X; with probability % + v
’ 1 — X; with probability % -,
@ How to estimate p = Ep{X;}? — Let X; ~ P and Q is a distribution over “unfair coin flips”.
@ Observe the following expectation over “unfair coin flips”:
1 1 1 1 1
Eo{Vi} =X, | = 1-X) (= - =29X; + = — X,=Eg<—[(Yi—=
o{Yi} (2+7>+( )(2 7) it g -1 = 9{27< 2+7)}
@ Consider the following estimator: 1 )
b= y, - L
i (5 (-3+))
@ Unbiased? We have

Bt =130 (2 (B -5 +9)) = %Z( ((2Ertxy 45 =7) - 5 +7)) =Bn(x)

i=1 =
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Randomized Response

How Informative?

Randomized Response

X; with probability % + v
Y; = 1
2

1— X; with probability 5 — 7,
@ How to estimate p = Ep{X;}? — Let X; ~ P and Q is a distribution over “unfair coin flips”.

@ Observe the following expectation over “unfair coin flips”:

1 1 1 1 1
Eo{Vi} =X (= 1-X)(z=7)=29X 4+ = — Xi=FEo{ — (Yi—=
ofYi} (2+7>+( )(2 7) it g -1 = 9{27< 2+7)}
@ Consider the following estimator: . )
= Y, — =
2 (5 (-3))
@ Unbiased? We have

Bt =130 (2 (B0 - +9) ) = 13 (£ ((2metxd+ 1 -7) - 5 +9) ) =Boixa

=1 =1

@ The randomized response looks “working”! How can we prove that this “algorithm” does not leak privacy?
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A Goodness Metric in Differential Privacy (DP)

Definition
A randomized algorithm M is (g, §)-differentially private if for any S € Range(M) and for any
two “neighboring” datasets D7 and Do,

P {M(Dy) € S} < exp(e)P {M(D2) € S} +9,
where the probability is taken over the randomness of M.

e Consider the following special case (i.e., § = 0 and € — 0):

|~ 1 < P {M(D,) € S}
exp(e) — P{M(D9) € S}

> After applying differentially private M, i.e., S = M(Dy), an attacker cannot tell whether S
is from Dy or Dy so cannot extract information from the difference between D; and Ds.

» eg, D1 ={X1=0,Xo =1}, Dy = {X; =0}, S = {1}, M = “contain 17"
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Randomized Response is DP

Theorem
The randomized response is (In 3, 0)-differentially private.
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Randomized Response is DP

Theorem

The randomized response is (In 3, 0)-differentially private.

Proof sketch.
@ M: a randomized response
» M(Xq,...,Xn) = Y1,..., V)
o Let vy = i
o Consider any realization S € {0,1}" of (Y1,...,Y,).
o Consider X = (X1,...,X,) and X' := (X{,..., X],) which differ only in coordinate j.
@ Then, we have

PIM(X) =8} _ [l PIMX:) = Si} _ PAM(X)) =S5} P{Y; =S} _ 1/2+79 _ s
PIM(X") =8} [ILPIMX]) =8} PIMX) =8} P{Y/=8} " 1/2—v =

> Note that S; is fixed but the left-hand side of the inequality maximizes if S; = 1.
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Laplace Mechanism

Definition

Given any function f : NI*l — R, the Laplace mechanism is defined as:

My (z, f,e) = f(x)+ (Y1,...,Y%),

Af
L

where Y] are i.i.d. random variables drawn from Lap <f(m)Z

o Lap(a|t) = Lap(b) = % exp (~13))

o The ¢;-sensitivity of a function f : NI¥l — R¥ is

Af = max 1 (@) = f)l-

2 yeNI¥ |z —yll1=1

@ e.g., x is a dataset and f is a post-processor.
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Laplace Mechanism is DP

Theorem
The Laplace mechanism preserves (e, 0)-differential privacy.
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Laplace Mechanism is DP
Proof Sketch
o Let z € NI*l and y € NI*l be such that |lz — y|; <1
@ p,: the PDF of My(x, f,e), i.e, py(z) = P{Myr(z, f,e) = z}
e py: the PDF of My(y, f,¢)
e For any z € R*, we have
k

ey = L (e (5055 fee (2105) )

- e (1f ()i — 2] = |f (@)i — =)
_Hexp( = >

<ﬁm%W@QMM)

<exp(e).

Px(2)
° y (2

> exp (—¢) follows by symmetry.

~—

]
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Gaussian Mechanism is DP

Definition

Let f : NI*I — R? be an arbitrary d-dimensional function, and define its /5 sensitivity to be
As f = maXadjacentz,y || f(x) — f(y)|l2. The Gaussian Mechanism with parameter o adds noise
scaled to N(0,0?) to each of the d components of the output.

Theorem
Let e € (0,1) be arbitrary. For ¢ > 21n (122), the Gaussan Mechanism with parameter
o> % is (e, 0)-differentially private.
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How Can It be Connected to Learning?

Journal of Machine Learning Research 12 (2011) 1069-1109 Submitted 6/10; Revised 2/11; Published 3/11
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Empirical Risk Minimization (ERM)

Setup

@ X: an example space
» Assume that [|z||s < 1forz e X

@ V: a label space

o D= {(zj,y:)}I"qy € X x V: a training set
o f: X — Y: a predictor

@ /: Y xY — R: aloss function

@ Regularized empirical risk minimization (ERM):

Zﬁ ), 5i) + AN(f),

where N(f) is a regularizer.
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Assumptions

Definition

A function f(z) over x € R? is said to be strictly convex if for all a € (0,1), z, and y(# z),

floz+(1-a)y) <af(z)+(1-a)f(y).

It is said to be A-strongly convex if for all « € (0,1), z, and y(# z),

floz+ (1= a)y) < af(@) + (1 - a)f () ~ ha(1 - oo — 3.

A strictly convex function has a unique minimum.

(strongly convex) = (strictly convex)
The regularizer N(-) and loss (-, -) are differentiable.

» No ¢1-norm regularizer
> No hinge loss

o Note that these assumptions are for handy analyses (and could be relaxed).
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Privacy Model

Goal: Learn a classifier which preserves the privacy of individual entities of a training set D.
Definition (e-differential privacy)

An algorithm A provides e-differential privacy if for any two data sets D and D’ that differ in a
single entry and for any S

- PlAD) €S} _ .
¢ SPUD)es =

e A(D): a randomized algorithm that returns a classifier from a training set D.

@ D' and D have n — 1 samples (z;,y;) in common; the different sample contains private
values.
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Is ERM differentially private?

@ Given D and D/, let

fp = argmin J(£,D) and [, = argmin J(f, D)

o Letting S == {f5},
P{fpeSt=14P{fp €S} =0
» Note that our ERM is deterministic.
@ Thus, ERM is not differentially private!
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Algorithm 1: Output Perturbation

Output Perturbation

fpriv = arg m}n J(fv D) +b

@ b is random noise with density
v(b) x e PPl
: _ nA
with 3 = 3=,
@ This algorithm is randomized.
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Algorithm 2: Objective Perturbation

Objective Perturbation
1
fpriv = arg m}n J(f’ D) + Ebe
@ b is random noise with density
v(b) o e Bllbll

2
e—log(l—i-j—/c\—i-—ngAz )

with g = 5 (assuming ¢ is chosen to be > 0).

@ This algorithm is randomized.
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Privacy Guarantee

Theorem

If N(-) is differentiable and 1-strongly convex, and { is convex and differentiable with
|¢/(z)| <1 for all z, then Algorithm 1 provides e-differential privacy.

Theorem

If N(-) is doubly differentiable and 1-strongly convex, and ¢ is convex and doubly differentiable
with |[0'(z)| <1 and |("(z)| < ¢ for all z, then Algorithm 2 provides e-differential privacy.

@ Algorithm 2 requires stronger assumptions.
@ What's the benefit of Algorithm 27
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Correctness Guarantee

Lemma

Suppose N(-) is doubly differentiable with |V N (f)||l2 < n for all f, £ is differentiable and has continuous

c-Lipschitz derivatives. Given D, let f* := argmaxy J(D, f) let fpi, be the output of Algorithm 1. Then, we
have

. 2d° (£ +n) log® ¢
Py {J (foriv, D) = J(f7, D) < 7es >1-4.

Lemma

Suppose N(-) is 1-strongly convex and globally differentiable, and ¢ is convex and differentiable with |¢'(z)| < 1
for all z. Given D, let f* := argmaxy J(D, f) and let foi, be the output of Algorithm 2. Then, we have

. 4d? logQ%
Py {J(fprivap)_‘](f 7D)ST252 >1-4.

o If £ +mn > 2, Algorithm 2 is better.
@ Intuition: if perturbations are considered in learning, the algorithm finds a better classifier.
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Conclusion

o Differential privacy in learning:

» Hide “local” information — satisfying the privacy guarantee
» Learn “global” information — satisfying the correctness guarantee

@ Two goals are conflicting each other and balancing two is critical.
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