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Why Privacy Guarantees in Learning?

Not anonymized dataset for learning – privacy leak

Anonymized dataset for learning – looks okay but possible to leak private information
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Why Privacy Guarantees in Learning?
Anonymized Dataset

Figure: An example from Kearns & Roth, The Ethical Algorithm

anonymized dataset – looks okay but still privacy leak
▶ If we know Rebecca is 55 years old and in this database, then we know she has 1 of 2

diseases.
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Why Not Use Cryptosystems?

Set-up for Encryption

Sender Reciever

Adversary

Encrypt Dencrypt

Entities in encryption: Sender, Receiver, and Adversary

Set-up for Private Learning

Sender
(=curator)

Reciever = 
Adversary
(=analyst)

e.g., a learning algorithm (=curator) releases a model for some “benefits”

But, the model should not reveal private information.

Note that homomorphic encryption could be alternatives but slow (yet)
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Goal for Privacy In Learning

Goal

Learning nothing about an individual while learning useful information about a population.

How to achieve this goal? Add noise!

In the learning context,
▶ Here, an algorithm can transform a dataset into another dataset
▶ Sender: an algorithm that releases a model
▶ Reciever: A model user
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Randomized Response
An Example

Goal of A Survey

Estimate a statistic on illegal behaviors of participants, where

Curator: a participant

Analyst: a researcher

Each participant follows the following survey process:
1 Flip a coin
2 If “tails”, then respond truthfully.
3 If “heads”, then flip a second coin and respond “Yes” if “heads” and “No” if “tails”.
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Randomized Response
General Description

Randomized Response

Yi =

{
Xi with probability 1

2 + γ

1−Xi with probability 1
2 − γ,

Xi ∈ {0, 1}: the truthful response

Yi ∈ {0, 1}: a randomized response
γ = 0: a uniformly random strategy

✓ private
✗ not informative

γ = 1/2: an honest strategy
✗ no privacy
✓ informative

γ = 1/4: the previous example.
✓ private → no learning on an individual response
✓ informative → learning on a population statistic
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Randomized Response
How Informative?

Randomized Response

Yi =

{
Xi with probability 1

2 + γ

1−Xi with probability 1
2 − γ,

How to estimate p = EP{Xi}? – Let Xi ∼ P and Q is a distribution over “unfair coin flips”.

Observe the following expectation over “unfair coin flips”:

EQ{Yi} = Xi

(
1

2
+ γ

)
+ (1−Xi)

(
1

2
− γ

)
= 2γXi +

1

2
− γ =⇒ Xi = EQ

{
1

2γ

(
Yi −

1

2
+ γ

)}
Consider the following estimator:

p̂ :=
1

n

n∑
i=1

(
1

2γ

(
Yi −

1

2
+ γ

))
Unbiased? We have

E{p̂} =
1

n

n∑
i=1

(
1

2γ

(
E{Yi} −

1

2
+ γ

))
=

1

n

n∑
i=1

(
1

2γ

((
2γEP{Xi}+

1

2
− γ

)
− 1

2
+ γ

))
= EP{Xi}.

The randomized response looks “working”! How can we prove that this “algorithm” does not leak privacy?
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A Goodness Metric in Differential Privacy (DP)

Definition

A randomized algorithm M is (ε, δ)-differentially private if for any S ∈ Range(M) and for any
two “neighboring” datasets D1 and D2,

P {M(D1) ∈ S} ≤ exp(ε)P {M(D2) ∈ S}+ δ,

where the probability is taken over the randomness of M.

Consider the following special case (i.e., δ = 0 and ε → 0):

1 ≈ 1

exp(ε)
≤ P {M(D1) ∈ S}
P {M(D2) ∈ S}

≤ exp(ε) ≈ 1

▶ After applying differentially private M, i.e., S = M(D1), an attacker cannot tell whether S
is from D1 or D2 so cannot extract information from the difference between D1 and D2.

▶ e.g., D1 = {X1 = 0, X2 = 1}, D2 = {X1 = 0}, S = {1}, M = “contain 1?”
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Randomized Response is DP

Theorem

The randomized response is (ln 3, 0)-differentially private.

Proof sketch.

M: a randomized response
▶ M(X1, . . . , Xn) = (Y1, . . . , Yn)

Let γ = 1
4

Consider any realization S ∈ {0, 1}n of (Y1, . . . , Yn).

Consider X := (X1, . . . , Xn) and X ′ := (X ′
1, . . . , X

′
n) which differ only in coordinate j.

Then, we have

P{M(X) = S}
P{M(X ′) = S} =

∏n
i=1P{M(Xi) = Si}∏n
i=1P{M(X ′

i) = Si}
=
P{M(Xj) = Sj}
P{M(X ′

j) = Sj}
=
P{Yj = Sj}
P{Y ′

j = Sj}
≤ 1/2 + γ

1/2− γ
= eln 3.

▶ Note that Sj is fixed but the left-hand side of the inequality maximizes if Sj = 1.
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Laplace Mechanism

Definition

Given any function f : N|X | → Rk, the Laplace mechanism is defined as:

ML(x, f, ε) := f(x) + (Y1, . . . , Yk),

where Yi are i.i.d. random variables drawn from Lap
(
f(x)i

∣∣∣ ∆f
ε

)
.

Lap(x|b) = Lap(b) = 1
2b exp

(
− |x|

b

)
The ℓ1-sensitivity of a function f : N|X | → Rk is

∆f := max
x,y∈N|X|,∥x−y∥1=1

∥f(x)− f(y)∥1.

e.g., x is a dataset and f is a post-processor.
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Laplace Mechanism is DP

Theorem

The Laplace mechanism preserves (ε, 0)-differential privacy.
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Laplace Mechanism is DP
Proof Sketch

Let x ∈ N|X | and y ∈ N|X | be such that ∥x− y∥1 ≤ 1
px: the PDF of ML(x, f, ε), i.e., px(z) := P{ML(x, f, ε) = z}
py: the PDF of ML(y, f, ε)

For any z ∈ Rk, we have

px(z)

py(z)
=

k∏
i=1

(
exp

(
−ε|f(x)i − zi|

∆f

)/
exp

(
−ε|f(y)i − zi|

∆f

))

=

k∏
i=1

exp

(
ε (|f(y)i − zi| − |f(x)i − zi|)

∆f

)

≤
k∏

i=1

exp

(
ε|f(x)i − f(y)i|

∆f

)
= exp

(
ε∥f(x)− f(y)∥1

∆f

)
≤ exp (ε) .

px(z)
py(z)

≥ exp (−ε) follows by symmetry.
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Gaussian Mechanism is DP

Definition

Let f : N|X | → Rd be an arbitrary d-dimensional function, and define its ℓ2 sensitivity to be
∆2f = maxadjacentx,y ∥f(x)− f(y)∥2. The Gaussian Mechanism with parameter σ adds noise
scaled to N (0, σ2) to each of the d components of the output.

Theorem

Let ε ∈ (0, 1) be arbitrary. For c2 > 2 ln
(
1.25
δ

)
, the Gaussan Mechanism with parameter

σ ≥ c∆2f
ε is (ε, δ)-differentially private.
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How Can It be Connected to Learning?

16 / 25



Empirical Risk Minimization (ERM)
Setup

X : an example space
▶ Assume that ∥x∥2 ≤ 1 for x ∈ X

Y: a label space

D := {(xi, yi)}ni=1 ⊆ X × Y: a training set

f : X → Y: a predictor

ℓ : Y × Y → R: a loss function

Regularized empirical risk minimization (ERM):

J(f,D) :=
1

n

n∑
i=1

ℓ(f(xi), yi) + ΛN(f),

where N(f) is a regularizer.
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Assumptions

Definition

A function f(x) over x ∈ Rd is said to be strictly convex if for all α ∈ (0, 1), x, and y(̸= x),

f (αx+ (1− α)y) < αf(x) + (1− α)f(y).

It is said to be λ-strongly convex if for all α ∈ (0, 1), x, and y( ̸= x),

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− 1

2
λα(1− α)∥x− y∥22.

A strictly convex function has a unique minimum.

(strongly convex) =⇒ (strictly convex)

The regularizer N(·) and loss ℓ(·, ·) are differentiable.
▶ No ℓ1-norm regularizer
▶ No hinge loss

Note that these assumptions are for handy analyses (and could be relaxed).
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Privacy Model

Goal: Learn a classifier which preserves the privacy of individual entities of a training set D.

Definition (ε-differential privacy)

An algorithm A provides ε-differential privacy if for any two data sets D and D′ that differ in a
single entry and for any S

e−ε ≤ P{A(D) ∈ S}
P{A(D′) ∈ S}

≤ eε.

A(D): a randomized algorithm that returns a classifier from a training set D.

D′ and D have n− 1 samples (xi, yi) in common; the different sample contains private
values.
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Is ERM differentially private?

Given D and D′, let

f∗
D = argmin

f
J(f,D) and f∗

D′ = argmin
f

J(f,D′)

Letting S := {f∗
D},

P{f∗
D ∈ S} = 1 ̸= P{f∗

D′ ∈ S} = 0

▶ Note that our ERM is deterministic.

Thus, ERM is not differentially private!
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Algorithm 1: Output Perturbation

Output Perturbation

fpriv = argmin
f

J(f,D) + b

b is random noise with density
v(b) ∝ e−β∥b∥

with β = nΛε
2 .

This algorithm is randomized.
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Algorithm 2: Objective Perturbation

Objective Perturbation

fpriv = argmin
f

J(f,D) +
1

n
bT f

b is random noise with density
v(b) ∝ e−β∥b∥

with β =
ε−log

(
1+ 2c

nΛ
+ c2

n2Λ2

)
2 (assuming ε is chosen to be β > 0).

This algorithm is randomized.

22 / 25



Privacy Guarantee

Theorem

If N(·) is differentiable and 1-strongly convex, and ℓ is convex and differentiable with
|ℓ′(z)| ≤ 1 for all z, then Algorithm 1 provides ε-differential privacy.

Theorem

If N(·) is doubly differentiable and 1-strongly convex, and ℓ is convex and doubly differentiable
with |ℓ′(z)| ≤ 1 and |ℓ′′(z)| ≤ c for all z, then Algorithm 2 provides ε-differential privacy.

Algorithm 2 requires stronger assumptions.

What’s the benefit of Algorithm 2?

23 / 25



Correctness Guarantee

Lemma
Suppose N(·) is doubly differentiable with ∥∇N(f)∥2 ≤ η for all f , ℓ is differentiable and has continuous
c-Lipschitz derivatives. Given D, let f∗ := argmaxf J(D, f) let fpriv be the output of Algorithm 1. Then, we
have

Pb

{
J(fpriv,D)− J(f∗,D) ≤

2d2
(

c
Λ
+ η

)
log2 d

δ

Λn2ε2

}
≥ 1− δ.

Lemma

Suppose N(·) is 1-strongly convex and globally differentiable, and ℓ is convex and differentiable with |ℓ′(z)| ≤ 1
for all z. Given D, let f∗ := argmaxf J(D, f) and let fpriv be the output of Algorithm 2. Then, we have

Pb

{
J(fpriv,D)− J(f∗,D) ≤

4d2 log2 d
δ

Λn2ε2

}
≥ 1− δ.

If c
Λ + η > 2, Algorithm 2 is better.

Intuition: if perturbations are considered in learning, the algorithm finds a better classifier.
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Conclusion

Differential privacy in learning:
▶ Hide “local” information → satisfying the privacy guarantee
▶ Learn “global” information → satisfying the correctness guarantee

Two goals are conflicting each other and balancing two is critical.
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