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Motivation

o Certified removal [Guo et al., 2020] assumes strongly convex loss

@ Zhang et al. [2024] provides a direct extention of certified removal [Guo et al., 2020] for
deep learning
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Definition: Certified Unlearning

Definition ((e, §)-Certified Unlearning)
Let

@ D be a training set,

@ D, C D be an unlearning set,
e D, =D\ D, be a retain set,
@ 71 be a hypothesis space,

@ A be a learning algorithm.

Then, U is an e-0 certified unlearning algorithm if and only if for all 7 C #H, we have

P{U(D, Dy, A(D)) € T} < &P{A(D,) € T} + 6
P{A(D,) € T} < eP{U(D, Dy, A(D)) € T} + 6.

3/15



Key Theorem for Certified Unlearning

Theorem
Let

e W* := arg minyey L(w, D,),

@ W = Uremove(w*, Dy, D), and
o HUN) — UNJ*HQ S A
Then,
Unide(w”™, Dy, D) :=w +Y
is an e-0 certified unlearning if Y ~ N(0,0%1) and o > %\ /21n %.

@ The key next step is bounding A.

» With convex models, boudning A seems feasible.
» How about non-convex models in general?
» How about non-convex models in unlearning?
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Algorithm

Certified Unlearning without Convexity

Algorithm: A Single-Step Newton Update (Uremove)
W = =w* — H AV L(w*, D,)

H: a set of models

D: an original training set

D,, C D: an unlearned set

D, =D\ D,: a retained set

w* = arg min,ey L(w, D): an optimal trained model — could be a local optimum
w* = arg miny,ey L£(w, D,): an optimal unlearned model — could be a local optimum

w: an estimated unlearned model — why? due to the Taylor expansion of V. at w*, i.e,
VL(w*,Dy) = VL(w*, Dy) + Hy (0" —w")

Thus, 0 = VL(0*, D,) = VL(w*, D,) + Hy (0" — w*) implies the update rule.
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Main Direction

Certified Unlearning without Convexity

Bounding the approximation error ||[w — @w*||2. To this end, we need following assumptions.

Assumption 1

A loss function ¢(w, z,y) has an L-Lipschitz gradient in w, i.e.,

IVL(w, D)2 < L.

Assumption 2

A loss function ¢(w, z,y) has an M-Lipschitz Hessian in w, i.e.,

1w — Hurll2 < Mjw —w'||2.
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Approximation Error

Certified Unlearning without Convexity

Lemma

We have the following approximation error (given previously defined notations):

2+ [lw* — @3

. M,
o — @z < S| H?

@ Note that the proof of this lemma does not need global optimality.
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Bounding the Norm of the Inverse Hessian

Certified Unlearning without Convexity

“Regularized” Update
W = w* — (Hy+ + \)7IVL(w*, D)

@ Intuitively, we approximatly convert the non-convex objective to the strongly convex one.
> In general, | H,! || is arbitrarly large.
» Add a small diagonal, i.e., |[(Hy + M) 71|
objective, i.e., L(w,D,) + %|w|3
» At w*, the regularized objective can be strongly convex for some .

2, equivalent to the Hessian of the regularized

@ In short, we have the following (see the paper for details):
1

Hy + M) 7Yy = ———
[(Huy» 4+ A1) |2 -

> Amin: the smallest eigenvalue of H,«
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Bounding the Norm of w* — w
Certified Unlearning without Convexity

Constrained Learning

w* =arg min L(w,D) and @w" =arg min L(w,D.
B o £ D) 2 i £ Pr)

@ This means that we have changed our learning algorithm to a constrained one.

@ If the constraints are satisfied, we have

[w* =@z < w2 + || = @*[2 < 2C

9/15



Tk

Bounding the Norm of w* — w
Certified Unlearning without Convexity

Constrained Learning

* . ~x 9
w* =arg min L(w,D) and ©@*=arg min L(w,D,)
lwle<c™ Jwllo<c™ "
@ This means that we have changed our learning algorithm to a constrained one.

@ If the constraints are satisfied, we have
[w* — w2 < [[w*[l2 + [| — @2 < 2C

e Can you criticize?
» Can we actually have small C for neural networks (as ||z||2 is proportional to the dimension
of z)?
» How to find a proper C7 We may implement this by regularized learning and choose to use a
measured C.
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Approximation Error Bound
Main Theorem of This Paper

Theorem
With the regularized update, We have

20(MC + \)

M —
D —w|s < [ =—|lw* — @]y + A Hyr + M) 7o - [Jw* — %2 <
|| — @*||2 (2 |w* — @*||2 ) | (Hu )7 ll2 - flw® = @l A+ Amin

@ Recall that
> w* = arg minj,|,<c
> 0 =w* — (Hy + M) TIVL(w*, D;) with A > || Hyp |2
> W* = argminyj,,<c L(w*, D)
> Amin: the smallest eigenvalue of H,,«
@ A few notes:

» Can we unlearn with certification from any original model?
» Is this data-dependent bound?
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Efficient Hessian Computation

Proposition

Given x i.i.d. tained samples {X1,..., X}, we have {H, y,...,Hsx} of the Hessian
Hy» + M, where H; \ == V2L(w*, X;) + A, let

- H. -
=1l A =il
B =1 (I— I; )HZ._L/\,

where Hyy = I and ||V2(w*,z)| < H for all z € D,. Then, —# is an asymptotic unbiased
estimator of the inverse Hessian (Hy» + \I)~1.

>

@ Reduces sample complexity, i.e., we need only s samples instead of n samples.
> O(np? +p°) = O(sp?)

@ Is this effective with “data parallelization”?
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Membership Inference Attack

Experiment

Method MLP & MNIST AINICNN & CIFAR-10 ResNet18 & SVHN
Relearn T Attack Acc  Attack AUC | Relearn T Attack Acc  Attack AUC | Relearn T Attack Acc  Attack AUC
Retrain 25 93.10 £033 95.16 + 047 17 79.82 +£035 88.71 £043 7 90.47 £0.14 93.07 £0.27
Fine Tune 17 93.65 £023 95.37 £ 046 14 79.42 £1.05 88.13 £0.66 7 90.63 £032 92.96 +0.31
Neg Grad 21 93.73 £045 9542 +043 17 78.63 £123 87.58 +£0.96 9 90.02 £0.13 92.89 +0.22
Fisher 21 93.85 +£022 95.37 £ 051 14 79.70 +£1.03 88.58 £0.76 9 90.47 £ 084 93.13 +0.19
L-CODEC 20 95.05 +£0.05 9531 +o0.21 14 83.60 + 062 92.18 +0.17 7 93.22 +035 93.75 + 054
Certified 24 93.22 +046 95.28 +0.50 25 78.00 +1.18 87.22 +1.13 9 88.63 +1.58 92.18 + 1.16

o Attack Acc (= Attack F1 score) is as good as retraining.
@ Here, Attack means membership inference attacks, e.g.,

> For {(z;,b;)} where z; := (x;,y;) and b; € {“2; € Dyain”, “2i € Dunlearn” }, an attacker h
wins if h(z;) correctly predicts b;
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Unlearning Time

Experiment
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o Efficient — note that the y-axis is log-scale.
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Conclusion

@ Proposes a certified unlearning method for deep models.
> (I guess) Mainly thanks to the bounded optimal solutions, i.e.,

w" =arg min L(w,D) and @* =arg min L(w,D,).
& fullagc (. D) % fullazc (1, Dr)

» The above implies
lw* —w*|]s < 2C.
@ Minimizing C is crucial for achieving a good accuracy.

» Recall that minHwHQSC E(w,D)

2C(MCH+X) 1.25
» Recall that o 2 m 21n S

» Larger C' — larger noise o — accruacy drop
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