Trustworthy Machine Learning

Unlearning 2

Sangdon Park

POSTECH

Motivation

- Certified removal [Guo et al., 2020] assumes strongly convex loss
- Zhang et al. [2024] provides a direct extention of certified removal [Guo et al., 2020] for deep learning

Definition: Certified Unlearning

Definition ((ε, δ) -Certified Unlearning)

Let

- ullet $\mathcal D$ be a training set,
- ullet $\mathcal{D}_u \subset \mathcal{D}$ be an unlearning set,
- ullet $\mathcal{D}_r\coloneqq \mathcal{D}\setminus \mathcal{D}_u$ be a retain set,
- ullet \mathcal{H} be a hypothesis space,
- ullet \mathcal{A} be a learning algorithm.

Then, \mathcal{U} is an ε - δ certified unlearning algorithm if and only if for all $\mathcal{T} \subseteq \mathcal{H}$, we have

$$\mathbb{P}\{\mathcal{U}(\mathcal{D}, \mathcal{D}_u, \mathcal{A}(\mathcal{D})) \in \mathcal{T}\} \le e^{\varepsilon} \mathbb{P}\{\mathcal{A}(\mathcal{D}_r) \in \mathcal{T}\} + \delta$$
$$\mathbb{P}\{\mathcal{A}(\mathcal{D}_r) \in \mathcal{T}\} \le e^{\varepsilon} \mathbb{P}\{\mathcal{U}(\mathcal{D}, \mathcal{D}_u, \mathcal{A}(\mathcal{D})) \in \mathcal{T}\} + \delta.$$

Key Theorem for Certified Unlearning

Theorem

Let

- $\tilde{w}^* := \arg\min_{w \in \mathcal{H}} \mathcal{L}(w, \mathcal{D}_r)$,
- $\tilde{w} \coloneqq \mathcal{U}_{\text{remove}}(w^*, \mathcal{D}_u, \mathcal{D})$, and
- $\bullet \|\tilde{w} \tilde{w}^*\|_2 \le \Delta.$

Then,

$$\mathcal{U}_{hide}(w^*, \mathcal{D}_u, \mathcal{D}) \coloneqq \tilde{w} + Y$$

is an
$$\varepsilon$$
- δ certified unlearning if $Y \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ and $\sigma \geq \frac{\Delta}{\varepsilon} \sqrt{2 \ln \frac{1.25}{\delta}}$.

- The key next step is bounding Δ .
 - With convex models, bounding Δ seems feasible.
 - How about non-convex models in general?
 - How about non-convex models in unlearning?

Algorithm

Certified Unlearning without Convexity

Algorithm: A Single-Step Newton Update ($\mathcal{U}_{\mathsf{remove}}$)

$$\tilde{w}^* \approx \tilde{w} = w^* - H_{w^*}^{-1} \nabla \mathcal{L}(w^*, \mathcal{D}_r)$$

- \bullet \mathcal{H} : a set of models
- \bullet \mathcal{D} : an original training set
- $\mathcal{D}_u \subset \mathcal{D}$: an unlearned set
- $\mathcal{D}_r \coloneqq \mathcal{D} \setminus \mathcal{D}_u$: a retained set
- $m{\nu}_r \coloneqq m{\nu} \setminus m{\nu}_u$. a recalled set
- $w^* := \arg\min_{w \in \mathcal{H}} \mathcal{L}(w, \mathcal{D})$: an optimal trained model could be a local optimum • $\tilde{w}^* := \arg\min_{w \in \mathcal{H}} \mathcal{L}(w, \mathcal{D}_r)$: an optimal unlearned model – could be a local optimum
- $w := \arg \min_{w \in \mathcal{H}} \mathcal{L}(w, \mathcal{D}_f)$. an optimal unlearned model why? due to the Taylor expansion of $\nabla \mathcal{L}$ at w^* i.e.
- \tilde{w} : an estimated unlearned model why? due to the Taylor expansion of $\nabla \mathcal{L}$ at w^* , i.e.,

$$\nabla \mathcal{L}(\tilde{w}^*, \mathcal{D}_r) \approx \nabla \mathcal{L}(w^*, \mathcal{D}_r) + H_{w^*}(\tilde{w}^* - w^*)$$

Thus, $0 = \nabla \mathcal{L}(\tilde{w}^*, \mathcal{D}_r) \approx \nabla \mathcal{L}(w^*, \mathcal{D}_r) + H_{w^*}(\tilde{w}^* - w^*)$ implies the update rule.

Main Direction

Certified Unlearning without Convexity

Bounding the approximation error $\|\tilde{w} - \tilde{w}^*\|_2$. To this end, we need following assumptions.

Assumption 1

A loss function $\ell(w,x,y)$ has an L-Lipschitz gradient in w, i.e.,

$$\|\nabla \mathcal{L}(w, \mathcal{D})\|_2 \leq L.$$

Assumption 2

A loss function $\ell(w,x,y)$ has an M-Lipschitz Hessian in w, i.e.,

$$||H_w - H_{w'}||_2 \le M||w - w'||_2.$$

Approximation Error

Certified Unlearning without Convexity

Lemma

We have the following approximation error (given previously defined notations):

$$\|\tilde{w} - \tilde{w}^*\|_2 \le \frac{M}{2} \|H_{w^*}^{-1}\|_2 \cdot \|w^* - \tilde{w}^*\|_2^2.$$

Note that the proof of this lemma does not need global optimality.

Bounding the Norm of the Inverse Hessian

Certified Unlearning without Convexity

"Regularized" Update

$$\tilde{w} = w^* - (H_{w^*} + \lambda I)^{-1} \nabla \mathcal{L}(w^*, \mathcal{D}_r)$$

- Intuitively, we approximatly convert the non-convex objective to the strongly convex one.
 - ▶ In general, $||H_{w^*}^{-1}||_2$ is arbitrarly large.
 - Add a small diagonal, *i.e.*, $\|(H_{w^*} + \lambda I)^{-1}\|_2$, equivalent to the Hessian of the regularized objective, *i.e.*, $\mathcal{L}(w, \mathcal{D}_r) + \frac{\lambda}{2} \|w\|_2^2$
 - At w^* , the regularized objective can be strongly convex for some λ .
- In short, we have the following (see the paper for details):

$$\|(H_{w^*} + \lambda I)^{-1}\|_2 = \frac{1}{\lambda + \lambda_{\min}}$$

 $ightharpoonup \lambda_{\min}$: the smallest eigenvalue of H_{w^*}

Bounding the Norm of $w^* - \tilde{w}^*$

Certified Unlearning without Convexity

Constrained Learning

$$w^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D})$$
 and $\tilde{w}^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D}_r)$

- This means that we have changed our learning algorithm to a constrained one.
- If the constraints are satisfied, we have

$$||w^* - \tilde{w}^*||_2 \le ||w^*||_2 + ||-\tilde{w}^*||_2 \le 2C$$

Bounding the Norm of $w^* - \tilde{w}^*$

Certified Unlearning without Convexity

Constrained Learning

$$w^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D})$$
 and $\tilde{w}^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D}_r)$

- This means that we have changed our learning algorithm to a constrained one.
- If the constraints are satisfied, we have

$$||w^* - \tilde{w}^*||_2 \le ||w^*||_2 + ||-\tilde{w}^*||_2 \le 2C$$

- Can you criticize?
 - ▶ Can we actually have small C for neural networks (as $||x||_2$ is proportional to the dimension of x)?
 - ▶ How to find a proper C? We may implement this by regularized learning and choose to use a measured C.
 - **...**

Approximation Error Bound

Main Theorem of This Paper

Theorem

With the regularized update, We have

$$\|\tilde{w} - \tilde{w}^*\|_2 \le \left(\frac{M}{2} \|w^* - \tilde{w}^*\|_2 + \lambda\right) \|(H_{w^*} + \lambda I)^{-1}\|_2 \cdot \|w^* - \tilde{w}^*\|_2 \le \frac{2C(MC + \lambda)}{\lambda + \lambda_{\min}}.$$

- Recall that
 - $w^* = \arg\min_{\|w\|_2 < C}$
 - $\tilde{w} = w^* (H_{w^*} + \lambda I)^{-1} \nabla \mathcal{L}(w^*, \mathcal{D}_r) \text{ with } \lambda > \|H_{w^*}\|_2$
 - $\tilde{w}^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w^*, \mathcal{D}_r)$
 - $ightharpoonup \lambda_{\min}$: the smallest eigenvalue of H_{w^*}
- A few notes:
 - ▶ Can we unlearn with certification from any original model?
 - ▶ Is this data-dependent bound?

Efficient Hessian Computation

Proposition

Given x i.i.d. tained samples $\{X_1,\ldots,X_s\}$, we have $\{H_{1,\lambda},\ldots,H_{s,\lambda}\}$ of the Hessian $H_{w^*}+\lambda I$, where $H_{i,\lambda}:=\nabla^2\mathcal{L}(w^*,X_i)+\lambda I$, let

$$\tilde{H}_{i,\lambda}^{-1} = I + \left(I - \frac{H_{i,\lambda}}{H}\right) \tilde{H}_{i-1,\lambda}^{-1},$$

where $\tilde{H}_{0,\lambda}^{-1} = I$ and $\|\nabla^2 \ell(w^*, x)\| \le H$ for all $x \in \mathcal{D}_r$. Then, $\frac{\tilde{H}_{s,\lambda}^{-1}}{H}$ is an asymptotic unbiased estimator of the inverse Hessian $(H_{w^*} + \lambda I)^{-1}$.

- ullet Reduces sample complexity, *i.e.*, we need only s samples instead of n samples.
 - $O(np^2 + p^3) \to O(sp^2)$
- Is this effective with "data parallelization"?

Membership Inference Attack

Experiment

Method	MLP & MNIST			AlICNN & CIFAR-10			ResNet18 & SVHN		
	Relearn T	Attack Acc	Attack AUC	Relearn T	Attack Acc	Attack AUC	Relearn T	Attack Acc	Attack AUC
Retrain	25	93.10 ± 0.33	95.16 ± 0.47	17	79.82 ± 0.35	88.71 ± 0.43	7	90.47 ± 0.14	93.07 ± 0.27
Fine Tune	17	93.65 ± 0.23	95.37 ± 0.46	14	79.42 ± 1.05	88.13 ± 0.66	7	90.63 ± 0.32	92.96 ± 0.31
Neg Grad	21	93.73 ± 0.45	95.42 ± 0.43	17	78.63 ± 1.23	87.58 ± 0.96	9	90.02 ± 0.13	92.89 ± 0.22
Fisher	21	93.85 ± 0.22	95.37 ± 0.51	14	79.70 ± 1.03	88.58 ± 0.76	9	90.47 ± 0.84	93.13 ± 0.19
L-CODEC	20	95.05 ± 0.05	95.31 ± 0.21	14	83.60 ± 0.62	92.18 ± 0.17	7	93.22 ± 0.35	93.75 ± 0.54
Certified	24	93.22 ± 0.46	95.28 ± 0.50	25	78.00 ± 1.18	87.22 ± 1.13	9	88.63 ± 1.58	92.18 ± 1.16

- Attack Acc (= Attack F1 score) is as good as retraining.
- Here, Attack means membership inference attacks, e.g.,
 - ▶ For $\{(z_i,b_i)\}$ where $z_i := (x_i,y_i)$ and $b_i \in \{ "z_i \notin \mathcal{D}_{\mathsf{train}}", "z_i \in \mathcal{D}_{\mathsf{unlearn}}" \}$, an attacker h wins if $h(z_i)$ correctly predicts b_i

Unlearning Time

Experiment

• Efficient – note that the y-axis is log-scale.

Conclusion

- Proposes a certified unlearning method for deep models.
 - ▶ (I guess) Mainly thanks to the bounded optimal solutions, i.e.,

$$w^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D})$$
 and $\tilde{w}^* = \arg\min_{\|w\|_2 \le C} \mathcal{L}(w, \mathcal{D}_r).$

▶ The above implies

$$||w^* - \tilde{w}^*||_2 \le 2C.$$

- ullet Minimizing C is crucial for achieving a good accuracy.
 - Recall that $\min_{\|w\|_2 \leq C} \mathcal{L}(w, \mathcal{D})$
 - ▶ Recall that $\sigma \geq \frac{2C(MC+\lambda)}{\varepsilon(\lambda+\lambda_{\min})} \sqrt{2\ln\frac{1.25}{\delta}}$
 - ▶ Larger $C \to \text{larger noise } \sigma \xrightarrow{\cdot} \text{accruacy drop}$

Reference I

- C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten. Certified data removal from machine learning models. In *International Conference on Machine Learning*, pages 3832–3842. PMLR, 2020.
- B. Zhang, Y. Dong, T. Wang, and J. Li. Towards certified unlearning for deep neural networks. *arXiv preprint arXiv:2408.00920*, 2024.