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Why Unlearning?

Remove sensitive or private data from a trained model

Remove data for data-poisoning attacks

...
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Certified Removal with A Linear Assumption

ICML20
The term “machine unlearning” seems to firstly appear in Cao and Yang [2015].
Quite early (and I guess the first) certified removal work.
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Overview on Key Ideas

1 Desire to remove a labeled example from a trained parametric model.
▶ This task is trivial for non-parametric models.

2 The parameter of the pre-trained model embeds the information of the target labeled
example.

3 How to remove this?
▶ learning: gradient descent
▶ unlearning: gradient ascent

4 Gradient “ascent” almost remove this information, but not perfect.

5 Let’s also add noise to hide the remaining information.
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Definition: ε-Certified Removal

Given ε > 0, we say that removal mechanism M performs ε-certified removal (ε-CR) for a
learning algorithm A if ∀T ⊆ H,D ⊆ Z, z ∈ D

e−ε ≤ P{M(A(D),D, z) ∈ T }
P{A(D \ z) ∈ T }

≤ eε,

where the probability is taken over the randomness of A and M .

ε: an unlearning parameter.

X : example space

Y: label space

Z := X × Y
D ⊆ Z: a training set

H: a hypothesis set

A : D → H: a (randomized) learning algorithm

In short, we wish to have M(A(D),D, z) ≈ A(D \ z)
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Definition: (ε, δ)-Certified Removal

Given ε, δ > 0, we say that removal mechanism M performs (ε, δ)-certified removal for a
learning algorithm A if ∀T ⊆ H,D ⊆ Z, z ∈ D

P{M(A(D),D, z) ∈ T } ≤ eεP{A(D \ z) ∈ T }+ δ and

P{A(D \ z) ∈ T } ≤ eεP{M(A(D),D, z) ∈ T }+ δ.

δ upper bounds the failure probability of

e−ε ≤ P{M(A(D),D, z) ∈ T }
P{A(D \ z) ∈ T }

≤ eε,
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Candidate Method: Exact Removal

Exact Removal

M(A(D),D, z) := A(D \ z)

M is trivially 0-CR.

e0 ≤ P{A(D \ z) ∈ T }
P{A(D \ z) ∈ T }

≤ e0,

Impractical as we need to retrain a model whenever a training sample is removed.
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Candidate Method: Differential Privacy

Differential Privacy (DP)

A is ε-differentially private if for any T ⊆ H, D, and D′,

e−ε ≤ P{A(D) ∈ T }
P{A(D′) ∈ T }

≤ eε,

where D and D′ differ in only one sample.

The DP of A is a sufficient condition for certified removal by setting M as an identity
function, i.e., M(A(D),D, z) := A(D) and D′ := D \ z.

▶ A never memorizes a training sample, so we don’t need to worry about removing it.
▶ But, DP requires (one-time) retraining and usually introduces poor performance.

However, the DP of A is not a necessary condition for certified removal.
▶ A nearest-neighbor classifier is not differentially private but it can be 0-CR.

“Retraining from scratch” and “DP” are two extreme removal methods (in removal
efficiency).
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Removal Mechanism: Setup
D := {(x1, y1), . . . , (xn, yn)}: a training set

Consider a linear classifier.

Learning objective: regularized empirical risk minimization, i.e.,

L(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22,

where ℓ is a convex loss function differentiable everywhere.

w∗: an optimal and unique classifier, i.e.,

w∗ := argmin
w

L(w;D) := A(D).

Goal: given a training sample (x, y) to remove, find w̃ such that

w̃ ≈ A(D̃),

where D̃ := D \ {(x, y)}.
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(Not Yet Certified) Removal Mechanism

Newton update removal mechanism M

w̃ = M(w∗,D, (xn, yn)) := w∗ +H−1
w∗∆

WLOG, remove the last sample (xn, yn)

w∗ := argminw L(w;D) = A(D)

w̃∗ := argminw L(w; D̃) = A(D̃)

Hw∗ := ∇2L(w∗; D̃): the Hessian of L(·, D̃) at w∗

∆ := λw∗ +∇ℓ((w∗)Txn, yn): the loss gradient at a sample (xn, yn)

Similar to the Newton’s update, i.e.,

wt+1 = wt −
(
∇2ℓ(wT

t xn, yn)
)−1∇ℓ(wT

t xn, yn)

▶ The Newton’s update: learn (xn, yn)
▶ The Newton’s update removal mechanism: unlearn (xn, yn)

Why Newton? Fast removal (i.e., removal with one step update)
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(Not Yet Certified) Removal Mechanism

Newton update removal mechanism M

w̃ = M(w∗,D, (xn, yn)) := w∗ +H−1
w∗ ∆ = w∗ + (∇2L(w∗; D̃))−1(λw∗ +∇ℓ((w∗)Txn, yn))

Why?
▶ Recall that w∗ := argminw L(w;D) = A(D)
▶ Recall that w̃∗ := argminw L(w; D̃) = A(D̃)
▶ Due to the Taylor expansion (a.k.a. quadratic approximation),

L(w; D̃) ≈ L(w∗; D̃) +∇L(w∗; D̃)(w − w∗)

▶ We wish to find w̃∗ such that ∇L(w̃∗; D̃) = 0. Thus, the following holds:

0 ≈ ∇L(w∗; D̃) +∇2L(w∗; D̃)(w̃∗ − w∗) =⇒ w̃∗ ≈ w∗ − (∇2L(w∗; D̃))−1∇L(w∗; D̃)

▶ Addtionally, we have

0 = ∇L(w∗;D) =

n∑
i=1

∇ℓ((w∗)Txi, yi) + λnw∗ = ∇L(w∗; D̃) +∇ℓ((w∗)Txn, yn) + λw∗

⋆ Additional simplification for efficiency by leveraging recursive relation.
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Measuring the Failure of Unlearning

Gradient residual

∥∇L(w̃; D̃)∥2

In the strongly convex setup, the gradient completely characterizes unlearning.
▶ We don’t need to consider the approximation error due to optimization.

If ∇L(w̃; D̃) = 0, w̃ is the unique minimizer of L(·; D̃), implying successfully unlearned!

This also means ∥∇L(w̃; D̃)∥2 is the measure of “unlearning error”.

Can we bound this quantity?
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Bound on the Failure of Unlearning

Theorem

Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is γ-Lipschitz, and ∥xi∥2 ≤ 1 for
all xi. Then, we have

∥∇L(w̃; D̃)∥2 ≤
4γC2

λ2(n− 1)
.

Strong-convexity is used here.
See the paper for the data-dependent bound.
As n → ∞, ∥∇(w̃; D̃)∥2 → 0. Is it enough?
Claim: the gradient may leak information on the unlearned sample.

▶ Consider D = {(e1, 1), . . . , (ed, d)}, where ei for 1 ≤ i ≤ d are the standard basis vectors.
▶ The regressor is initialized with zero.
▶ wi ̸= 0 if (ei, i) is included in D.
▶ An approximate removal will still leave wi small.
▶ 1 (wi ̸= 0) indicates the existence of (ei, i) ∈ D.

Not easy to remove; then how to hide this leaked information?
▶ Add noise!
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Loss Perturbation

Perturbed empirical risk

Lb(w;D) :=

n∑
i=1

ℓ(wTxi, yi) +
λn

2
∥w∥22 + bTw

b is randomly drawn from some distribution (i.e., draw b and optimize)

bTw: Add noise during training time.
▶ This masks the information in the gradient residual ∇Lb(w̃; D̃)!.
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▶ This masks the information in the gradient residual ∇Lb(w̃; D̃)!.
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Gradient Residual of Loss Perturbation

Perturbed gradient residual

∇Lb(w; D̃) =

n−1∑
i=1

∇ℓ(wTxi, yi) + λ(n− 1)w︸ ︷︷ ︸
∇L(w;D̃)

+b

Recall that we use ∇L(·, D̃) to measure the failure of unlearning (≈ information leakage)
(before) Cannot hide the gradient residual

▶ w̃∗ = argminw L(w; D̃)
▶ w̃: the Newton removal mechanism w.r.t. L
▶ ∇L(w̃∗; D̃) = 0 but having ∇L(w̃; D̃) = 0 is not easy for fast/approximate removal, leaking

information.
(after) Potentially hide the gradient residual

▶ w̃∗ = argminw Lb(w; D̃)
▶ w̃: the Newton removal mechanism w.r.t. Lb

▶ ∇Lb(w̃
∗; D̃) = 0 implies ∇L(w̃∗; D̃) = −b.

▶ As ∇L(w̃∗; D̃) is noisy, anyway ∇L(w̃; D̃) ̸= 0 does not leak information.
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(Finally) ε-Certified Removal

Theorem

Let A be the learning algorithm that minimizes Lb(w;D) and M be the Newton update
removal mechanism. Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is

γ-Lipschitz, and ∥xi∥2 ≤ 1 for all xi. If b1, b2 ∼ p(b) ∝ e−
ε
ε′ ∥b∥2 (where ε′ := 4γC2

λ2(n−1)
) and

∥b1 − b2∥2 ≤ ε′ then M is ε-CR for A.

ε: a user-specified unlearning parameter.

b1, b2 ∼ p(b) ∝ e−
ε
ε′ ∥b∥2 and ∥b1 − b2∥2 ≤ ε′: e.g., drawing from a distribution with a

constraint (realistic?)
▶ A high-probable CR definition in the paper can relax the constraint on the distribution.

The ideal retraining algorithm: w̃∗ = argminw Lb(w, D̃)
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(Finally) Certified Removal: A Proof Sketch
Recall the certified removal (CR) definition:

P {M(A(D),D, x) ∈ T }

P

{
A(D̃) ∈ T

} =
P{w̃ ∈ T }
P{w̃∗ ∈ T }

?
≤ eε

Here, the probability is taken over the randomness of the algorithm.

The randomness is from the loss perturbation by b. Suppose b1, b2 ∼ p(b) ∝ e−
ε
ε′ ∥b∥2 .

Then,

p(b1)

p(b2)
= exp

{
− ε

ε′
(∥b1∥2 − ∥b2∥2)

}
= exp

{ ε

ε′
(∥b2∥2 − ∥b1∥2)

}
≤ exp

{ ε

ε′
(∥b2 − b1∥2)

}
≤ eε

From Theorem 2 of the paper,

p(b1)

p(b2)
≤ eε =⇒ P{w̃ ∈ T }

P{w̃∗ ∈ T }
≤ eε.
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(ε, δ)-Certified Removal

Theorem

Let A be the learning algorithm that minimizes Lb(w;D) and M be the Newton update
removal mechanism. Suppose that ∥∇ℓ(wTxi, yi)∥2 ≤ C for any (xi, yi) and w, ℓ′′ is

γ-Lipschitz, and ∥xi∥2 ≤ 1 for all xi. If b ∼ N (0, c ε
′

ε ) with c > 0 (where ε′ := 4γC2

λ2(n−1)
), then

M is (ε, δ)-CR for A with δ = 1.5e−c2/2.

More complex but more practical
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Results: Fast

Removal on the last linear layer

Faster than retraining
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Results: Easy v.s. Hard

Recall the Newton update removal:

w̃ = M(w∗,D, (xn, yn)) := w∗ +H−1
w∗∆

Top 10: 10 examples with higher ∥H−1
w∗∆∥2

Bottom 10: 10 examples with lower ∥H−1
w∗∆∥2

Unusual samples are not easy to undo!
▶ Removing outliers is harder.
▶ The model tends to memorize unusual samples.
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Results: CR v.s. DP

Why not simply use DP?
▶ CR Linear (from minimization of perturbed loss) is more accurate than DP Linear; looks

better than DP. Why?

Why not use non-DP extractor?
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Conclusion

How to evaluate the success of unlearning?

Is the linear assumption critical?
▶ We can remove data from the last linear layer of a deep network, which seems to be enough?

We need to retrain a linear model with noise; not useful?
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