Trustworthy Machine Learning Unlearning 1

Sangdon Park

POSTECH

Why Unlearning?

- Remove sensitive or private data from a trained model
- Remove data for data-poisoning attacks
- ..

Certified Removal with A Linear Assumption

Certified Data Removal from Machine Learning Models

Chuan Guo¹ Tom Goldstein² Awni Hannun² Laurens van der Maaten²

Abstract Good data stewardship requires removal of data

at the request of the data's owner. This raises the question if and how a trained meahine-learning model, which implicitly stores information about its training data, should be affected by such a removal request. Is it possible to "remove" data from a machine-learning model? We study this problem by defining certified removal: a very strong theoretical guarantee that a model from which data is removed cannot be distinguished from a model that never observed the data to begin with. We develop a certified-removal mechanism for linear classifiers and empirically study learning settings in which this mechanism is practical.

14 Aug 2020

inference attacks (Yeom et al., 2018; Carlini et al., 2019) are unsuccessful on data that was removed from the model. We emphasize that certified removal is a very strong notion of removal; in practical applications, less constraining notions may equally fulfill the data owner's expectation of removal.

We develop a certified-removal mechanism for L_{12}^{-} -regularized linear models that are trained using a direct entiable convex loss function, e_R , logistic regressors. Our removal mechanism applies a Newton step on the model parameters that largely removes the influence of the model parameters that largely removes the influence of the model and apoint; the residual error of this mechanism decreases quadratical and entire the simulation of the decrease quadratical cannot extract information from the small are six of the training set. To ensure residual (t_e , to certify removal), we mask the residual continuity of the six of the six of the training loss (Chaudhuri et al., 2011). We empirically study in which settings the removal mechanism is practical.

- ICML20
- The term "machine unlearning" seems to firstly appear in Cao and Yang [2015].
- Quite early (and I guess the first) certified removal work.

• Desire to remove a labeled example from a trained parametric model.

- Desire to remove a labeled example from a trained parametric model.
 - ▶ This task is trivial for non-parametric models.

- 1 Desire to remove a labeled example from a trained parametric model.
 - ▶ This task is trivial for non-parametric models.
- The parameter of the pre-trained model embeds the information of the target labeled example.

- ① Desire to remove a labeled example from a trained parametric model.
 - ▶ This task is trivial for non-parametric models.
- The parameter of the pre-trained model embeds the information of the target labeled example.
- How to remove this?

- Desire to remove a labeled example from a trained parametric model.
 - ▶ This task is trivial for non-parametric models.
- The parameter of the pre-trained model embeds the information of the target labeled example.
- 4 How to remove this?
 - ► learning: gradient descent

- Desire to remove a labeled example from a trained parametric model.
 - ▶ This task is trivial for non-parametric models.
- The parameter of the pre-trained model embeds the information of the target labeled example.
- 4 How to remove this?
 - learning: gradient descent
 - unlearning: gradient ascent

- Desire to remove a labeled example from a trained parametric model.
 - ▶ This task is trivial for non-parametric models.
- The parameter of the pre-trained model embeds the information of the target labeled example.
- 4 How to remove this?
 - learning: gradient descent
 - unlearning: gradient ascent
- Gradient "ascent" almost remove this information, but not perfect.

- Desire to remove a labeled example from a trained parametric model.
 - ► This task is trivial for non-parametric models.
- The parameter of the pre-trained model embeds the information of the target labeled example.
- 4 How to remove this?
 - learning: gradient descent
 - unlearning: gradient ascent
- Gradient "ascent" almost remove this information, but not perfect.
- Let's also add noise to hide the remaining information.

Definition: ε -Certified Removal

Given $\varepsilon > 0$, we say that removal mechanism M performs ε -certified removal (ε -CR) for a learning algorithm A if $\forall \mathcal{T} \subseteq \mathcal{H}, \mathcal{D} \subseteq \mathcal{Z}, z \in \mathcal{D}$

$$e^{-\varepsilon} \le \frac{\mathbb{P}\{M(A(\mathcal{D}), \mathcal{D}, z) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D} \setminus z) \in \mathcal{T}\}} \le e^{\varepsilon},$$

where the probability is taken over the randomness of A and M.

- ε : an unlearning parameter.
- ullet \mathcal{X} : example space
- ullet \mathcal{Y} : label space
- ullet $\mathcal{Z}\coloneqq\mathcal{X}\times\mathcal{Y}$
- $\mathcal{D} \subseteq \mathcal{Z}$: a training set
- \bullet \mathcal{H} : a hypothesis set
- $A: \mathcal{D} \to \mathcal{H}$: a (randomized) learning algorithm
- In short, we wish to have $M(A(\mathcal{D}), \mathcal{D}, z) \approx A(\mathcal{D} \setminus z)$

Definition: (ε, δ) -Certified Removal

Given $\varepsilon, \delta > 0$, we say that removal mechanism M performs (ε, δ) -certified removal for a learning algorithm A if $\forall \mathcal{T} \subseteq \mathcal{H}, \mathcal{D} \subseteq \mathcal{Z}, z \in \mathcal{D}$

$$\mathbb{P}\{M(A(\mathcal{D}),\mathcal{D},z)\in\mathcal{T}\}\leq e^{\varepsilon}\mathbb{P}\{A(\mathcal{D}\setminus z)\in\mathcal{T}\}+\delta\quad\text{and}\\ \mathbb{P}\{A(\mathcal{D}\setminus z)\in\mathcal{T}\}\leq e^{\varepsilon}\mathbb{P}\{M(A(\mathcal{D}),\mathcal{D},z)\in\mathcal{T}\}+\delta.$$

 \bullet δ upper bounds the failure probability of

$$e^{-\varepsilon} \le \frac{\mathbb{P}\{M(A(\mathcal{D}), \mathcal{D}, z) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D} \setminus z) \in \mathcal{T}\}} \le e^{\varepsilon},$$

Candidate Method: Exact Removal

Exact Removal

$$M(A(\mathcal{D}), \mathcal{D}, z) \coloneqq A(\mathcal{D} \setminus z)$$

• *M* is trivially 0-CR.

$$e^0 \le \frac{\mathbb{P}\{A(\mathcal{D} \setminus z) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D} \setminus z) \in \mathcal{T}\}} \le e^0,$$

Candidate Method: Exact Removal

Exact Removal

$$M(A(\mathcal{D}), \mathcal{D}, z) \coloneqq A(\mathcal{D} \setminus z)$$

 \bullet M is trivially 0-CR.

$$e^0 \le \frac{\mathbb{P}\{A(\mathcal{D} \setminus z) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D} \setminus z) \in \mathcal{T}\}} \le e^0,$$

• Impractical as we need to retrain a model whenever a training sample is removed.

Differential Privacy (DP)

A is ε -differentially private if for any $\mathcal{T} \subseteq \mathcal{H}$, \mathcal{D} , and \mathcal{D}' ,

$$e^{-\varepsilon} \le \frac{\mathbb{P}\{A(\mathcal{D}) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D}') \in \mathcal{T}\}} \le e^{\varepsilon},$$

Differential Privacy (DP)

A is ε -differentially private if for any $\mathcal{T} \subseteq \mathcal{H}$, \mathcal{D} , and \mathcal{D}' ,

$$e^{-\varepsilon} \le \frac{\mathbb{P}\{A(\mathcal{D}) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D}') \in \mathcal{T}\}} \le e^{\varepsilon},$$

where \mathcal{D} and \mathcal{D}' differ in only one sample.

• The DP of A is a sufficient condition for certified removal by setting M as an identity function, i.e., $M(A(\mathcal{D}), \mathcal{D}, z) \coloneqq A(\mathcal{D})$ and $\mathcal{D}' \coloneqq \mathcal{D} \setminus z$.

Differential Privacy (DP)

A is ε -differentially private if for any $\mathcal{T} \subseteq \mathcal{H}$, \mathcal{D} , and \mathcal{D}' ,

$$e^{-\varepsilon} \le \frac{\mathbb{P}\{A(\mathcal{D}) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D}') \in \mathcal{T}\}} \le e^{\varepsilon},$$

- The DP of A is a sufficient condition for certified removal by setting M as an identity function, i.e., $M(A(\mathcal{D}), \mathcal{D}, z) \coloneqq A(\mathcal{D})$ and $\mathcal{D}' \coloneqq \mathcal{D} \setminus z$.
 - A never memorizes a training sample, so we don't need to worry about removing it.

Differential Privacy (DP)

A is ε -differentially private if for any $\mathcal{T} \subseteq \mathcal{H}$, \mathcal{D} , and \mathcal{D}' ,

$$e^{-\varepsilon} \le \frac{\mathbb{P}\{A(\mathcal{D}) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D}') \in \mathcal{T}\}} \le e^{\varepsilon},$$

- The DP of A is a sufficient condition for certified removal by setting M as an identity function, i.e., $M(A(\mathcal{D}), \mathcal{D}, z) \coloneqq A(\mathcal{D})$ and $\mathcal{D}' \coloneqq \mathcal{D} \setminus z$.
 - ▶ A never memorizes a training sample, so we don't need to worry about removing it.
 - ▶ But, DP requires (one-time) retraining and usually introduces poor performance.

Differential Privacy (DP)

A is ε -differentially private if for any $\mathcal{T} \subseteq \mathcal{H}$, \mathcal{D} , and \mathcal{D}' ,

$$e^{-\varepsilon} \le \frac{\mathbb{P}\{A(\mathcal{D}) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D}') \in \mathcal{T}\}} \le e^{\varepsilon},$$

- The DP of A is a sufficient condition for certified removal by setting M as an identity function, i.e., $M(A(\mathcal{D}), \mathcal{D}, z) \coloneqq A(\mathcal{D})$ and $\mathcal{D}' \coloneqq \mathcal{D} \setminus z$.
 - ▶ A never memorizes a training sample, so we don't need to worry about removing it.
 - ▶ But, DP requires (one-time) retraining and usually introduces poor performance.
- ullet However, the DP of A is not a necessary condition for certified removal.
 - ▶ A nearest-neighbor classifier is not differentially private but it can be 0-CR.

Differential Privacy (DP)

A is ε -differentially private if for any $\mathcal{T} \subseteq \mathcal{H}$, \mathcal{D} , and \mathcal{D}' ,

$$e^{-\varepsilon} \le \frac{\mathbb{P}\{A(\mathcal{D}) \in \mathcal{T}\}}{\mathbb{P}\{A(\mathcal{D}') \in \mathcal{T}\}} \le e^{\varepsilon},$$

- The DP of A is a sufficient condition for certified removal by setting M as an identity function, i.e., $M(A(\mathcal{D}), \mathcal{D}, z) \coloneqq A(\mathcal{D})$ and $\mathcal{D}' \coloneqq \mathcal{D} \setminus z$.
 - ▶ A never memorizes a training sample, so we don't need to worry about removing it.
 - ▶ But, DP requires (one-time) retraining and usually introduces poor performance.
- ullet However, the DP of A is not a necessary condition for certified removal.
 - ▶ A nearest-neighbor classifier is not differentially private but it can be 0-CR.
- "Retraining from scratch" and "DP" are two extreme removal methods (in removal efficiency).

• $\mathcal{D} \coloneqq \{(x_1, y_1), \dots, (x_n, y_n)\}$: a training set

- $\mathcal{D} \coloneqq \{(x_1, y_1), \dots, (x_n, y_n)\}$: a training set
- Consider a linear classifier.

- $\mathcal{D} \coloneqq \{(x_1, y_1), \dots, (x_n, y_n)\}$: a training set
- Consider a linear classifier.
- Learning objective: regularized empirical risk minimization, i.e.,

$$L(w; \mathcal{D}) := \sum_{i=1}^{n} \ell(w^{T} x_{i}, y_{i}) + \frac{\lambda n}{2} ||w||_{2}^{2},$$

where ℓ is a convex loss function differentiable everywhere.

- $\mathcal{D} \coloneqq \{(x_1, y_1), \dots, (x_n, y_n)\}$: a training set
- Consider a linear classifier.
- Learning objective: regularized empirical risk minimization, i.e.,

$$L(w; \mathcal{D}) := \sum_{i=1}^{n} \ell(w^{T} x_{i}, y_{i}) + \frac{\lambda n}{2} ||w||_{2}^{2},$$

where ℓ is a convex loss function differentiable everywhere.

• w*: an optimal and unique classifier, i.e.,

$$w^* := \arg\min_{w} L(w; \mathcal{D}) := A(\mathcal{D}).$$

- $\mathcal{D} \coloneqq \{(x_1, y_1), \dots, (x_n, y_n)\}$: a training set
- Consider a linear classifier.
- Learning objective: regularized empirical risk minimization, i.e.,

$$L(w; \mathcal{D}) := \sum_{i=1}^{n} \ell(w^{T} x_{i}, y_{i}) + \frac{\lambda n}{2} ||w||_{2}^{2},$$

where ℓ is a convex loss function differentiable everywhere.

• w^* : an optimal and unique classifier, i.e.,

$$w^* := \arg\min_{w} L(w; \mathcal{D}) := A(\mathcal{D}).$$

• Goal: given a training sample (x,y) to remove, find \tilde{w} such that

$$\tilde{w} \approx A(\tilde{\mathcal{D}}),$$

where $\tilde{\mathcal{D}} \coloneqq \mathcal{D} \setminus \{(x,y)\}.$

Newton update removal mechanism M

$$\tilde{w} = M(w^*, \mathcal{D}, (x_n, y_n)) \coloneqq w^* + H_{w^*}^{-1} \Delta$$

- WLOG, remove the last sample (x_n, y_n)
- $w^* := \arg\min_{w} L(w; \mathcal{D}) = A(\mathcal{D})$
- $\tilde{w}^* := \arg\min_w L(w; \tilde{\mathcal{D}}) = A(\tilde{\mathcal{D}})$
- $H_{w^*} \coloneqq \nabla^2 L(w^*; \tilde{\mathcal{D}})$: the Hessian of $L(\cdot, \tilde{\mathcal{D}})$ at w^*
- $\Delta \coloneqq \lambda w^* + \nabla \ell((w^*)^T x_n, y_n)$: the loss gradient at a sample (x_n, y_n)

Newton update removal mechanism M

$$\tilde{w} = M(w^*, \mathcal{D}, (x_n, y_n)) \coloneqq w^* + H_{w^*}^{-1} \Delta$$

- WLOG, remove the last sample (x_n, y_n)
- $w^* := \arg\min_{w} L(w; \mathcal{D}) = A(\mathcal{D})$
- $\tilde{w}^* := \arg\min_w L(w; \tilde{\mathcal{D}}) = A(\tilde{\mathcal{D}})$
- $H_{w^*} := \nabla^2 L(w^*; \tilde{\mathcal{D}})$: the Hessian of $L(\cdot, \tilde{\mathcal{D}})$ at w^*
- $\Delta \coloneqq \lambda w^* + \nabla \ell((w^*)^T x_n, y_n)$: the loss gradient at a sample (x_n, y_n)
- Similar to the Newton's update, i.e.,

$$w_{t+1} = w_t - (\nabla^2 \ell(w_t^T x_n, y_n))^{-1} \nabla \ell(w_t^T x_n, y_n)$$

- ▶ The Newton's update: learn (x_n, y_n)
- ▶ The Newton's update removal mechanism: unlearn (x_n, y_n)

Newton update removal mechanism M

$$\tilde{w} = M(w^*, \mathcal{D}, (x_n, y_n)) := w^* + H_{w^*}^{-1} \Delta$$

- WLOG, remove the last sample (x_n, y_n)
- $w^* := \arg\min_{w} L(w; \mathcal{D}) = A(\mathcal{D})$
- $\tilde{w}^* := \arg\min_{w} L(w; \tilde{\mathcal{D}}) = A(\tilde{\mathcal{D}})$
- $H_{w^*} := \nabla^2 L(w^*; \tilde{\mathcal{D}})$: the Hessian of $L(\cdot, \tilde{\mathcal{D}})$ at w^*
- $\Delta := \lambda w^* + \nabla \ell((w^*)^T x_n, y_n)$: the loss gradient at a sample (x_n, y_n)
- Similar to the Newton's update, i.e.,

$$w_{t+1} = w_t - (\nabla^2 \ell(w_t^T x_n, y_n))^{-1} \nabla \ell(w_t^T x_n, y_n)$$

- ▶ The Newton's update: learn (x_n, y_n)
- ▶ The Newton's update removal mechanism: unlearn (x_n, y_n)
- Why Newton? Fast removal (i.e., removal with one step update)

Newton update removal mechanism M

$$\tilde{w} = M(w^*, \mathcal{D}, (x_n, y_n)) := w^* + H_{w^*}^{-1} \Delta = w^* + (\nabla^2 L(w^*; \tilde{\mathcal{D}}))^{-1} (\lambda w^* + \nabla \ell((w^*)^T x_n, y_n))$$

- Why?
 - Recall that $w^* := \arg\min_w L(w; \mathcal{D}) = A(\mathcal{D})$
 - Recall that $\tilde{w}^* \coloneqq \arg\min_w L(w; \tilde{\mathcal{D}}) = A(\tilde{\mathcal{D}})$
 - ▶ Due to the Taylor expansion (a.k.a. quadratic approximation),

$$L(w; \tilde{\mathcal{D}}) \approx L(w^*; \tilde{\mathcal{D}}) + \nabla L(w^*; \tilde{\mathcal{D}})(w - w^*)$$

▶ We wish to find \tilde{w}^* such that $\nabla L(\tilde{w}^*; \tilde{\mathcal{D}}) = 0$. Thus, the following holds:

$$0 \approx \nabla L(w^*; \tilde{\mathcal{D}}) + \nabla^2 L(w^*; \tilde{\mathcal{D}}) (\tilde{w}^* - w^*) \quad \Longrightarrow \quad \tilde{w}^* \approx w^* - (\nabla^2 L(w^*; \tilde{\mathcal{D}}))^{-1} \nabla L(w^*; \tilde{\mathcal{D}})$$

Addtionally, we have

$$0 = \nabla L(w^*; \mathcal{D}) = \sum_{i=1}^{n} \nabla \ell((w^*)^T x_i, y_i) + \lambda n w^* = \nabla L(w^*; \tilde{\mathcal{D}}) + \nabla \ell((w^*)^T x_n, y_n) + \lambda w^*$$

★ Additional simplification for efficiency by leveraging recursive relation.

$$\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2$$

- In the strongly convex setup, the gradient completely characterizes unlearning.
 - ▶ We don't need to consider the approximation error due to optimization.

$$\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2$$

- In the strongly convex setup, the gradient completely characterizes unlearning.
 - ▶ We don't need to consider the approximation error due to optimization.
- If $\nabla L(\tilde{w}; \tilde{\mathcal{D}}) = 0$, \tilde{w} is the unique minimizer of $L(\cdot; \tilde{\mathcal{D}})$, implying successfully unlearned!

$$\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2$$

- In the strongly convex setup, the gradient completely characterizes unlearning.
 - ▶ We don't need to consider the approximation error due to optimization.
- If $\nabla L(\tilde{w}; \tilde{\mathcal{D}}) = 0$, \tilde{w} is the unique minimizer of $L(\cdot; \tilde{\mathcal{D}})$, implying successfully unlearned!
- This also means $\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2$ is the measure of "unlearning error".

$$\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2$$

- In the strongly convex setup, the gradient completely characterizes unlearning.
 - ▶ We don't need to consider the approximation error due to optimization.
- If $\nabla L(\tilde{w}; \tilde{\mathcal{D}}) = 0$, \tilde{w} is the unique minimizer of $L(\cdot; \tilde{\mathcal{D}})$, implying successfully unlearned!
- This also means $\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2$ is the measure of "unlearning error".
- Can we bound this quantity?

Bound on the Failure of Unlearning

Theorem

Suppose that $\|\nabla \ell(w^T x_i, y_i)\|_2 \le C$ for any (x_i, y_i) and w, ℓ'' is γ -Lipschitz, and $\|x_i\|_2 \le 1$ for all x_i . Then, we have

$$\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2 \le \frac{4\gamma C^2}{\lambda^2 (n-1)}.$$

- Strong-convexity is used here.
- See the paper for the data-dependent bound.

Theorem

$$\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2 \le \frac{4\gamma C^2}{\lambda^2 (n-1)}.$$

- Strong-convexity is used here.
- See the paper for the data-dependent bound.
- As $n \to \infty$, $\|\nabla(\tilde{w}; \tilde{\mathcal{D}})\|_2 \to 0$. Is it enough?

Theorem

$$\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2 \le \frac{4\gamma C^2}{\lambda^2 (n-1)}.$$

- Strong-convexity is used here.
- See the paper for the data-dependent bound.
- As $n \to \infty$, $\|\nabla(\tilde{w}; \tilde{\mathcal{D}})\|_2 \to 0$. Is it enough?
- Claim: the gradient may leak information on the unlearned sample.
 - ▶ Consider $\mathcal{D} = \{(e_1, 1), \dots, (e_d, d)\}$, where e_i for $1 \leq i \leq d$ are the standard basis vectors.
 - ► The regressor is initialized with zero.
 - $w_i \neq 0$ if (e_i, i) is included in \mathcal{D} .
 - lacktriangle An approximate removal will still leave w_i small.
 - ▶ $\mathbb{1}(w_i \neq 0)$ indicates the existence of $(e_i, i) \in \mathcal{D}$.

Theorem

$$\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2 \le \frac{4\gamma C^2}{\lambda^2 (n-1)}.$$

- Strong-convexity is used here.
- See the paper for the data-dependent bound.
- As $n \to \infty$, $\|\nabla(\tilde{w}; \tilde{\mathcal{D}})\|_2 \to 0$. Is it enough?
- Claim: the gradient may leak information on the unlearned sample.
 - ▶ Consider $\mathcal{D} = \{(e_1, 1), \dots, (e_d, d)\}$, where e_i for $1 \leq i \leq d$ are the standard basis vectors.
 - ▶ The regressor is initialized with zero.
 - $w_i \neq 0$ if (e_i, i) is included in \mathcal{D} .
 - ightharpoonup An approximate removal will still leave w_i small.
 - ▶ $\mathbb{1}(w_i \neq 0)$ indicates the existence of $(e_i, i) \in \mathcal{D}$.
- Not easy to remove; then how to hide this leaked information?

Theorem

$$\|\nabla L(\tilde{w}; \tilde{\mathcal{D}})\|_2 \le \frac{4\gamma C^2}{\lambda^2 (n-1)}.$$

- Strong-convexity is used here.
- See the paper for the data-dependent bound.
- As $n \to \infty$, $\|\nabla(\tilde{w}; \tilde{\mathcal{D}})\|_2 \to 0$. Is it enough?
- Claim: the gradient may leak information on the unlearned sample.
 - ▶ Consider $\mathcal{D} = \{(e_1, 1), \dots, (e_d, d)\}$, where e_i for $1 \leq i \leq d$ are the standard basis vectors.
 - ▶ The regressor is initialized with zero.
 - $w_i \neq 0$ if (e_i, i) is included in \mathcal{D} .
 - ightharpoonup An approximate removal will still leave w_i small.
 - ▶ $\mathbb{1}(w_i \neq 0)$ indicates the existence of $(e_i, i) \in \mathcal{D}$.
- Not easy to remove; then how to hide this leaked information?
 - Add noise!

Loss Perturbation

Perturbed empirical risk

$$L_b(w; \mathcal{D}) := \sum_{i=1}^n \ell(w^T x_i, y_i) + \frac{\lambda n}{2} ||w||_2^2 + b^T w$$

- b is randomly drawn from some distribution (i.e., draw b and optimize)
- b^Tw : Add noise during training time.

Loss Perturbation

Perturbed empirical risk

$$L_b(w; \mathcal{D}) := \sum_{i=1}^n \ell(w^T x_i, y_i) + \frac{\lambda n}{2} ||w||_2^2 + b^T w$$

- b is randomly drawn from some distribution (i.e., draw b and optimize)
- b^Tw : Add noise during training time.
 - ▶ This masks the information in the gradient residual $\nabla L_b(\tilde{w}; \tilde{\mathcal{D}})!$.

Gradient Residual of Loss Perturbation

Perturbed gradient residual

$$\nabla L_b(w; \tilde{\mathcal{D}}) = \underbrace{\sum_{i=1}^{n-1} \nabla \ell(w^T x_i, y_i) + \lambda(n-1)w + b}_{\nabla L(w; \tilde{\mathcal{D}})}$$

- ullet Recall that we use $abla L(\cdot, ilde{\mathcal{D}})$ to measure the failure of unlearning (pprox information leakage)
- (before) Cannot hide the gradient residual
 - $\tilde{w}^* = \arg\min_{w} L(w; \tilde{\mathcal{D}})$
 - $ightharpoonup ilde{w}$: the Newton removal mechanism w.r.t. L
 - ▶ $\nabla L(\tilde{w}^*; \tilde{\mathcal{D}}) = 0$ but having $\nabla L(\tilde{w}; \tilde{\mathcal{D}}) = 0$ is not easy for fast/approximate removal, leaking information.
- (after) Potentially hide the gradient residual
 - $\tilde{w}^* = \arg\min_{w} L_b(w; \tilde{\mathcal{D}})$
 - $ightharpoonup ilde{w}$: the Newton removal mechanism w.r.t. L_b
 - $\nabla L_b(\tilde{w}^*; \tilde{\mathcal{D}}) = 0 \text{ implies } \nabla L(\tilde{w}^*; \tilde{\mathcal{D}}) = -b.$
 - As $\nabla L(\tilde{w}^*; \tilde{\mathcal{D}})$ is noisy, anyway $\nabla L(\tilde{w}; \tilde{\mathcal{D}}) \neq 0$ does not leak information.

(Finally) ε -Certified Removal

Theorem

Let A be the learning algorithm that minimizes $L_b(w;\mathcal{D})$ and M be the Newton update removal mechanism. Suppose that $\|\nabla \ell(w^Tx_i,y_i)\|_2 \leq C$ for any (x_i,y_i) and w, ℓ'' is γ -Lipschitz, and $\|x_i\|_2 \leq 1$ for all x_i . If $b_1,b_2 \sim p(b) \propto e^{-\frac{\varepsilon}{\varepsilon'}\|b\|_2}$ (where $\varepsilon' \coloneqq \frac{4\gamma C^2}{\lambda^2(n-1)}$) and $\|b_1-b_2\|_2 \leq \varepsilon'$ then M is ε -CR for A.

- ε : a user-specified unlearning parameter.
- $b_1, b_2 \sim p(b) \propto e^{-\frac{\varepsilon}{\varepsilon'}\|b\|_2}$ and $\|b_1 b_2\|_2 \leq \varepsilon'$: e.g., drawing from a distribution with a constraint (realistic?)
 - ▶ A high-probable CR definition in the paper can relax the constraint on the distribution.
- The ideal retraining algorithm: $\tilde{w}^* = \arg\min_{w} L_b(w, \tilde{\mathcal{D}})$

(Finally) Certified Removal: A Proof Sketch

• Recall the certified removal (CR) definition:

$$\frac{\mathbb{P}\left\{M(A(\mathcal{D}), \mathcal{D}, x) \in \mathcal{T}\right\}}{\mathbb{P}\left\{A(\tilde{\mathcal{D}}) \in \mathcal{T}\right\}} = \frac{\mathbb{P}\{\tilde{w} \in \mathcal{T}\}}{\mathbb{P}\{\tilde{w}^* \in \mathcal{T}\}} \stackrel{?}{\leq} e^{\varepsilon}$$

Here, the probability is taken over the randomness of the algorithm.

(Finally) Certified Removal: A Proof Sketch

• Recall the certified removal (CR) definition:

$$\frac{\mathbb{P}\left\{M(A(\mathcal{D}), \mathcal{D}, x) \in \mathcal{T}\right\}}{\mathbb{P}\left\{A(\tilde{\mathcal{D}}) \in \mathcal{T}\right\}} = \frac{\mathbb{P}\{\tilde{w} \in \mathcal{T}\}}{\mathbb{P}\{\tilde{w}^* \in \mathcal{T}\}} \stackrel{?}{\leq} e^{\varepsilon}$$

Here, the probability is taken over the randomness of the algorithm.

• The randomness is from the loss perturbation by b. Suppose $b_1, b_2 \sim p(b) \propto e^{-\frac{\varepsilon}{\varepsilon'}\|b\|_2}$. Then,

$$\frac{p(b_1)}{p(b_2)} = \exp\left\{-\frac{\varepsilon}{\varepsilon'} (\|b_1\|_2 - \|b_2\|_2)\right\} = \exp\left\{\frac{\varepsilon}{\varepsilon'} (\|b_2\|_2 - \|b_1\|_2)\right\}$$

$$\leq \exp\left\{\frac{\varepsilon}{\varepsilon'} (\|b_2 - b_1\|_2)\right\} \leq e^{\varepsilon}$$

(Finally) Certified Removal: A Proof Sketch

• Recall the certified removal (CR) definition:

$$\frac{\mathbb{P}\left\{M(A(\mathcal{D}), \mathcal{D}, x) \in \mathcal{T}\right\}}{\mathbb{P}\left\{A(\tilde{\mathcal{D}}) \in \mathcal{T}\right\}} = \frac{\mathbb{P}\{\tilde{w} \in \mathcal{T}\}}{\mathbb{P}\{\tilde{w}^* \in \mathcal{T}\}} \stackrel{?}{\leq} e^{\varepsilon}$$

Here, the probability is taken over the randomness of the algorithm.

• The randomness is from the loss perturbation by b. Suppose $b_1,b_2\sim p(b)\propto e^{-\frac{\varepsilon}{\varepsilon'}\|b\|_2}$. Then,

$$\frac{p(b_1)}{p(b_2)} = \exp\left\{-\frac{\varepsilon}{\varepsilon'} (\|b_1\|_2 - \|b_2\|_2)\right\} = \exp\left\{\frac{\varepsilon}{\varepsilon'} (\|b_2\|_2 - \|b_1\|_2)\right\}$$

$$\leq \exp\left\{\frac{\varepsilon}{\varepsilon'} (\|b_2 - b_1\|_2)\right\} \leq e^{\varepsilon}$$

• From Theorem 2 of the paper,

$$\frac{p(b_1)}{p(b_2)} \le e^{\varepsilon} \implies \frac{\mathbb{P}\{\tilde{w} \in \mathcal{T}\}}{\mathbb{P}\{\tilde{w}^* \in \mathcal{T}\}} \le e^{\varepsilon}.$$

(ε, δ) -Certified Removal

Theorem

Let A be the learning algorithm that minimizes $L_b(w;\mathcal{D})$ and M be the Newton update removal mechanism. Suppose that $\|\nabla \ell(w^Tx_i,y_i)\|_2 \leq C$ for any (x_i,y_i) and w, ℓ'' is γ -Lipschitz, and $\|x_i\|_2 \leq 1$ for all x_i . If $b \sim \mathcal{N}(0,c\frac{\varepsilon'}{\varepsilon})$ with c>0 (where $\varepsilon' \coloneqq \frac{4\gamma C^2}{\lambda^2(n-1)}$), then M is (ε,δ) -CR for A with $\delta=1.5e^{-c^2/2}$.

More complex but more practical

Results: Fast

Dataset	MNIST (§4.1)	LSUN (§4.2)	SST (§4.2)	SVHN (§4.3)
Removal setting Removal time	CR Linear 0.04s	Public Extractor + CR Linear 0.48s	Public Extractor + CR Linear 0.07s	DP Extractor + CR Linear 0.27s
Training time	15.6s	124s	61.5s	1.5h

- Removal on the last linear layer
- Faster than retraining

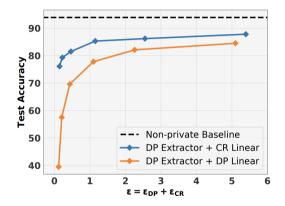
Results: Easy v.s. Hard

Recall the Newton update removal:

$$\tilde{w} = M(w^*, \mathcal{D}, (x_n, y_n)) := w^* + H_{w^*}^{-1} \Delta$$

- ullet Top 10: 10 examples with higher $\|H_{w^*}^{-1}\Delta\|_2$
- ullet Bottom 10: 10 examples with lower $\|H_{w^*}^{-1}\Delta\|_2$
- Unusual samples are not easy to undo!
 - Removing outliers is harder.
 - ▶ The model tends to memorize unusual samples.

Results: CR v.s. DP



- Why not simply use DP?
 - ► CR Linear (from minimization of perturbed loss) is more accurate than DP Linear; looks better than DP. Why?
- Why not use non-DP extractor?

Conclusion

- How to evaluate the success of unlearning?
- Is the linear assumption critical?
 - ▶ We can remove data from the last linear layer of a deep network, which seems to be enough?
- We need to retrain a linear model with noise; not useful?

Reference I

Y. Cao and J. Yang. Towards making systems forget with machine unlearning. In 2015 IEEE symposium on security and privacy, pages 463–480. IEEE, 2015.