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Motivation

@ Heuristic adversarial learning often fails against powerful adversaries with the same
maximum perturbation €.

CIFAR10
Simple ’ Wide Simple ’ Wide Simple| Wide
Natural 92.7% (95.2% 87.4% (90.3% 79.4% |87.3%
FGSM 27.5% |32.7% 90.9% (95.1% 51.7% |56.1%
PGD 0.8% |3.5% 0.0% | 0.0% 43.7% |45.8%

(a) Standard training (b) FGSM training (c) PGD training

» ¢-FGSM training and e-FGSM attacks: 90.9% accuracy :)
» £-FGSM training and e-PGD attacks: 0.0% accuracy :(
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PGD 0.8% |3.5% 0.0% | 0.0% 43.7% |45.8%

(a) Standard training (b) FGSM training (c) PGD training

» ¢-FGSM training and e-FGSM attacks: 90.9% accuracy :)
» £-FGSM training and e-PGD attacks: 0.0% accuracy :(

@ Can we learn a classifier robust to any small perturbations?

2/25



Certified Adversarial Learning
e Convex outer approximation [Kolter and Wong, 2017]

LR Lsl

Input z and Final layer 2; and Convex outer bound
allowable perturbations  peep network  adversarial polytope

v Certified!

ngﬁla}i é(f,l‘ + 5’ y) < U(aa famay)

* Essentially linear classification over overly approximated “convex polytope”-points

X Not scalable :(
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Certified Adversarial Learning

e Convex outer approximation [Kolter and Wong, 2017]

B —0—0— g = 0=
Input z and Final layer 2; and Convex outer bound
allowable perturbations  peep network ~ adversarial polytope

v Certified!

Hérﬁla)é g(f,fﬂ + 57 y) < U(Ea fﬂx7y)

* Essentially linear classification over overly approximated “convex polytope”-points

X Not scalable :(
@ Randomized smoothing: a post-hoc method

Certified Adversarial Rob via Randomized Smoothing

Jeremy Cohen' Elan Rosenfeld! J. Zico Kolter '2

v (Probably) Certified!
v/ Scalable!
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A Goodness Definition: Robustness

“Hard” Robustness
Vst |dllp, <e, flx+9)=f(z)

o f: X — Y: a hard-classifier
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A Goodness Definition: Robustness

“Hard” Robustness
Vo st 3l < e, flz+0) = f(2)

o f:X — Y: a hard-classifier
@ The constraint on the perturbation é can be more general.

@ It does not matter whether f(z) is correct.
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A Certified Method: Randomized Smoothing

Smoothed Classifier
g(x) = arg majgilP {f(x+6)=c} where §~N(0,0%])
ce
@ g: X — Y: a smoothed classifier

@ o is related to the maximum perturbation €.

@ Easier than convex outer approximation
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Robustness Guarantee

Binary Classification
Theorem
Suppose that pa € (0.5, 1] satisfies

P{f(z+0) =ca} =pa >pa where §~N(0,0%I).

Then, we have g(x + §) = cy if
H(5||2 < O'(I)fl(m).

@ c4: the most probable class when f classifies x + ¢
@ p4: the chance that f classifies z 4+ d by ca

@ pa: the lower bound of py

e ®~!: the inverse of the standard Gaussian CDF
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Robustness Guarantee

Binary Classification
Theorem
Suppose that pa € (0.5, 1] satisfies

P{f(z+0) =ca} =pa >pa where §~N(0,0%I).

Then, we have g(x + §) = cy if
H(SHQ < O'(I)fl(m).

ca: the most probable class when f classifies x + ¢
pA: the chance that f classifies © + 6 by ca

pa: the lower bound of py

®~!: the inverse of the standard Gaussian CDF

Here, we assume that we can compute PA-

We can compute the data-dependent maximum perturbation to be robust!
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Robustness Guarantee: A Proof Sketch (1/3)
Binary Classification

o Fix a perturbation §.
@ From the definition of g, we have

g(x +0) =argmaxP {f(x +e+6) =c} where &~ N(0,0%])
=argmax P {f(z+¢') =c} where & ~N(5,0°])
" (1)

iCA
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Robustness Guarantee: A Proof Sketch (1/3)
Binary Classification

o Fix a perturbation §.
@ From the definition of g, we have

g(x +0) =argmaxP {f(x +e+6) =c} where &~ N(0,0%])
=argmaxP {f(z+¢') =c} where & ~N(3,0°])

=ca (1)
e We wish to prove (1) for any classifier f under some condition. How?
» f can be any classifier, which is not easy to analyze.
» Consider a surrogate classifier that bounds the probability and is easier to analyze, e.g.,
! / ]‘
P{f(x+¢)=ca}> 5 = g(z+0) = ca.

Pl{f(x+<)=cyut> min
Vere)=cal 2 o
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Robustness Guarantee: A Proof Sketch (2/3)

Binary Classification

o Interestingly, f* is linear (due to the Neyman-Perason lemma), where

f* = arg P{f'(z+¢)=ca}

min
frP{f'(z+e)=ca}>pa

» There could be a non-linear classifier but we can find a corresponding linear classifier with
the same mininum value.
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Robustness Guarantee: A Proof Sketch (3/3)

Binary Classification

@ We have a closed-form solution of f*:

) = {cA if 67 (a' — ) < 061227 (pa)

cg otherwise

@ This (non-trivially) implies the following mininum value:

min P{f(z+c)=ca} =P{f'(a+e)=ca} =0 (‘P‘l(m) - HdHZ)

FrP{f'(z+e)=ca}>pa o

@ The above probability should be larger than 1, i.e.,

— (o

) 1
o <q>1<pA> ~ H||2> S5 = (ol < 0% (pa)
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Robustness Guarantee

Multi-class Classification

Theorem
Suppose that pa,pp € [0, 1] satisfy

P{f(x+¢)=ca} Z@ZZ@Z@@(PU(JC—{—&) =q.
Then, we have g(x + §) = c4 for all ||0]|2 < R, where
Ri=3 (27 (pa) ~ 27" (PB)
@ c4: the most probable label (with probability at least p4)

o cp = argmax.z., P {f(x + ) = c}: the second-most probable label (with probability at
most pg)
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Robustness Guarantee: An Alternative
Multi-class Classification

Theorem
Suppose that we have class A and B that satisfy

e Bl Sl — a2 — mmedP e S al

Then, we have g(xz + ) = A for all ||§]|2 < R, where

R:= = (® '(pa) — ® '(pB))-

N Q

e Consider a soft classifier fx : X — [0,1] for class k

@ A smoothed classifier gi(z) := argmaxy P.{ fx(z +¢)}
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Robustness Guarantee: An Alternative Proof Sketch (1/2)
@ Let fi : R™ — [0,1]: a soft classifier for class k
@ Let fi : X — [0,1]: a smoothed classifier for class , i.e.,

exp (=57 llz — ¢)|*)

(271'0’2)n dt = ]Ps{fk ($ + 5)}

fr(@) = (fr * N(0,01))(x) = - fr(®)

» The convolution of f, and N(0,01), a.k.a. the Weierstrass transform of fj
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Robustness Guarantee: An Alternative Proof Sketch (1/2)

@ Let fi : R™ — [0,1]: a soft classifier for class k

@ Let fi : X — [0,1]: a smoothed classifier for class , i.e.,

exp (=57 llz — ¢)|*)
(2ma2)n

fo(@) = (fu * N(0,01)) () = - fi(®) dt = P{fr(z + )}

» The convolution of f and NV (0,01), a.k.a. the Weierstrass transform of fj

@ Let pa is the most-probable class probability assigned by the smoothded classifier fk ie.,
pa = fa(z) where A=arg max fu(x)
@ Let p3 is the class probability by fi such that A # B and less than p4, ie.,

pPB = fB(ﬂ”) < pa.

@ Let & be a CDF of a Gaussian distribution, i.e.,

®(a) == \/% /:; exp (—%SQ) ds
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Robustness Guarantee: An Alternative Proof Sketch (2/2)

Then, we have the robustness guarantee due to the following reasons:

o For any perturbation § and any class k, we have
= = 1
! — ! 5 ‘< =612
07! (Fe(@) = @7 (Jula +9)| < - 1ol

» & 1o fis L-Lipschitz (check out the paper)
o Consider any adversarial perturbation § that changes the classification result, i.e.,

fa(z+96) < fp(z+48) for some B # A

@ For 4, we have
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Prediction

function PREDICT(f, o, x, 1, @)
counts < SAMPLEUNDERNOISE(f, z, n, o)
¢a,Cp + top two indices in counts
na,npg < counts[éa], counts[ég]
if BINOMPVALUE(n 4, na +npg,0.5) < areturn é4
else return ABSTAIN

@ Recall the randomized smoothing method:

g(x) = argmea;(IP {f(x+06)=c¢} where 6~ N(0,0%])

@ Draw n noisy perturbations d1,...,0,.
@ Empirically compute the most probable and the second most probably labels, i.e., ¢4 and ¢g.
© If ¢4 is drawn from the binomial distribution with p = 0.5, return ¢4.

@ Alternatively, you can use the (our-favorite) binomial tail bound.
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Certification in Evaluation

# certify the robustness of g around x

function CERTIFY(f, 0, x, ng, 1, @)
counts0 < SAMPLEUNDERNOISE(f, z, ng, o)
¢4 + top index in counts0
counts < SAMPLEUNDERNOISE(f, z,n,0)
pa < LOWERCONFBOUND(counts[éa], n, 1 — a)
if pa > 1 return prediction é4 and radius 0 = (p4)
else return ABSTAIN

@ Compute p4 via the binomial tail bound.
@ Compute the robust radius, i.e., c® !(p4).
Q If (a desired radius) < 0® !(py4), then “certified”.
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Results: ImageNet

1.0
— 0=0.25
§°-8 [ o=0.50
1

5 —— 0=1.00
g o6 |\
< SN T e I R I undefended

A
804
=
T
o 0.2

0.0 -
0.0 05 1.0 1.5 2.0 2.5 3.0 35 4.0

radius

o Classifier: ResNet-50
e undefended: a classifier with heuristic adversarial training (using ¢o adversarial attacks)
@ perturbation: [|d]]2 < (radius) = (maximum perturbation size)
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Results: Comparison

1.0

—— smoothing, large network
—— smoothing, small network
---= (Wong et al, 2018) 1
—— (Wong et al, 2018) 2
-------- (Wong et al, 2018) 3

certified accuracy

“0.0 05 1.0 15 2.0 25 3.0
radius

e (maybe) on MNIST
@ Baseline: deterministic robustness guarantee

@ randomized smoothing: high-probability guarantee
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Limitation of Randomized Smoothing

@ Randomized smoothing requires retraining (e.g., Gaussian data augmentation).

1.0
—— Cohen et al.

—— Stab+MSE-resnet18
Stab+MSE-resnet34

\ --- MSE
06 m ——- No denoiser

o
=3

Certified Accuracy
o
IS

°
N

£, radius

» Cohen et al.: Randomized smoothing with retraining
» No denoiser: Randomized smoothing without retraining

@ How to avoid retraining?
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Denoise Gaussian Noise

Denoised Smoothing:
A Provable Defense for Pretrained Classifiers

Hadi Salman Mingjie Sun Greg Yang
hasalman@nmicrosoft.com mingjies@cs.cmu.edu gragyang@microsoft.com
Microsoft Research CMU Microsoft Research

Ashish Kapoor J. Zico Kolter
akapoor@nicrosoft.com zkolter@cs.cmu.edu
Microsoft Research CMU

@ A classifier randomized smoothing needs to be robust to Gaussian noise for better
certified robustness.

@ How about using denoised smoothing and then use the randomized smoothing?
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Denoised Smoothing

Randomized Smoothing:
g(x) = arg rgleajg(P {f(x+6)=c} where §~N(0,0%])
@ Applicable for any classifier f
Denoised Smoothing:
g(z) == arg rgleaﬁdP {f(D(z+6)) =c} where &~ N(0,0%])

@ D: X — X: adenoiser that hopefully removes 4.
o Consider a NEW classifier f o D and then enjoy randomized smoothing.

@ Retraining f is not required.
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How to Train a Denoiser?
MSE objective:

Luse = E [Pl +0) ~ =i
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How to Train a Denoiser?
MSE objective:

Luse = E [Pl +0) ~ =i

X Does not consider the accuracy of a classifier.
Stability objective:

Lswab = E Lop(F(D(x+96)), f(z)) where § ~ N(0,0°1)

Z,Y,

e f: X — Y: a hard classifier
o F: X —10,1]M]: a soft classifer
v Find a denoiser D that does not change predictions by the classifier f.
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Results

1.0 1.0 1.0
—— Cohen et al. —— Cohen et al. —— Cohen et al.

0.8 —— Stab+MSE-resnet34 0.8 —— Stab+MSE-resnet18 08 —— Stab+MSE-resnet18
ol Stab+MSE-resnet50 > Stab+MSE-resnet50 s Stab+MSE-resnet34
£ <.+ MSE £ - MSE £ \--»MSE

0.6 i 306 : 306 :

g ——- No denoiser g No denoiser g . ——- No denoiser
< < <

o o o

£ o. Loa - Zo.

£ £ <

@ 137 @

(S o o

0.2

10 0.0 05 1.0 “00 05
£, radius £, radius

0.5
£, radius

(a) ResNet-18 (b) ResNet-34 (c) ResNet-50

@ The denoised smoothing without retraining is quite similar to the randomized smoothing
with retraining.
@ But not outperform the retraining one. How can we train a better denoiser?
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Diffusion Models as Denoisers

Denoised Smoothing

x+6 x

Randomilzed “Ideal" denoised
x —1{ Smoothing ‘ Scaling smoothing classifier

§ ~ N(0,02) (w/ a diff. model)

Assumptions:
@ A diffusion model assumes the following noise model:

z = Jayxo + V1 —ay - N(0,1),

where x( is an initial example, t is a timestep, and a4 is any noise scheduler
(monotonically decreasing in t).
» Under this noise model, an ideal denoiser finds o from x;.

Method:
@ Find t* for randomized smoothing that fits to the noise model for a diffusion model, i.e.,

find ¢ subj. to xg+N(0,0%T) ~ Joyxo + V1 — a; - N(0,T)
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Conclusion

@ Randomized smoothing provides a simple defense mechanism.

@ Desnoised smoothing does not require to retrain a classifier (but still requires training the

denoiser).

@ Recently, the denoised smoothing was improved via denoising diffusion

et al., 2023].

Certified Accuracy at € (%)

models [Carlini

Method Off-the-shelf Extra data 0.5 1.0 1.5 2.0 3.0
PixelDP (Lecuyer et al., 2019) O X (33.0)16.0 - -

RS (Cohen et al., 2019) o X (67.0)49,0 (700370 (570290 (440199 (40120
SmoothAdv (Salman et al., 2019) o X (65.0)56,0 (3400430 (540037 (400)27 (400200
Consistency (Jeong & Shin, 2020) o X (55.0)50,0 (35:0044,0 (5500340 (410240 (10170
MACER (Zhai et al., 2020) o X (68.0)57,0 (6400430 (6400310 (480)250 (48.0)14,0
Boosting (Horvith et al., 2022a) o X (65.6)570 (57:0)44,6 (57-00384 (446)28,6 (386212
DRT (Yang et al., 2021) o X (522)46.8 (55-2)44 4 (498)398 (498)304 (498)234
SmoothMix (Jeong et al., 2021) o X (55.0)50,0 (35:0043,0 (55.0)38,0 (400)26,0 (40.0)20,0
ACES (Horvith et al., 2022b) © X (63.8)540 (572422 (55-6)356 (398)25¢6 (44.0)19.8
Denoised (Salman et al., 2020) © X (60.0033 0 (38.0)140 (38.0)6 0 - -
Lee (Lee, 2021) ° X 41.0 24.0 11.0 - -
Ours ) v (828)71.1 (71543 (77:1)38.1 (60.0)29,5 (60.0)13 1
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