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Abstract

Deep neural networks are highly expressive models that have recently achieved
state of the art performance on speech and visual recognition tasks. While their
expressiveness is the reason they succeed, it also causes them to learn uninter-
pretable solutions that could have counter-intuitive properties. In this paper we
report two such properties.

First, we find that there is no distinction between individual high level units and
random linear combinations of high level units, according to various methods of
unit analysis. It suggests that it is the space, rather than the individual units, that
contains the semantic information in the high layers of neural networks.

Second, we find that deep neural networks learn input-output mappings that are
fairly discontinuous to a significant extent. We can cause the network to misclas-
sify an image by applying a certain hardly perceptible perturbation, which is found
by maximizing the network’s prediction error. In addition, the specific nature of
these perturbations is not a random artifact of learning: the same perturbation can
cause a different network, that was trained on a different subset of the dataset, to
misclassify the same input.




Adversarial Examples

The second property is concerned with the stability of neural networks with respect to small per-
turbations to their inputs. Consider a state-of-the-art deep neural network that generalizes well on
an object recognition task. We expect such network to be robust to small perturbations of its in-
put, because small perturbation cannot change the object category of an image. However, we find
that applying an imperceptible non-random perturbation to a test image, it is possible to arbitrarily
change the network’s prediction (see figure 5). These perturbations are found by optimizing the
input to maximize the prediction error. We term the so perturbed examples| “adversarial examples”.
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Adversarial perturbation




Why “Intriguing”?
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» The adversarial perturbation is “imperceptible”.
» Adversarial examples with a larger perturbation provides trivial results.

* The maximum perturbation value: e.q., % ~ 0.03

» The adversarial examples are transferable.
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Why “Intriguing”?

= There exists one adversarial
perturbation that makes the most ww
images being misclassified

Tibetan mastiff 0 Tibetan mastiff

Universal adversarial perturbations (CVPR17)



Contents

» How to generate adversarial examples?

» How to (heuristically) learn a robust network to adversarial
examples?

» What is the cause of adversarial examples?

= [s it practical?



Generating Adversarial Examples
High-level Objective

max £(f, x + 6, y)

" (x,y): a labeled example

= f: a classifier

" /(f,x,y): loss

= §: a set of perturbations

» x + §: an adversarial example that is misclassified by f



FGSM: Fast Gradient Sign Method

THE LINEAR EXPLANATION OF ADVERSARIAL EXAMPLES

Published as a conference paper at ICLR 2015

EXPLAINING AND HARNESSING
ADVERSARIAL EXAMPLES

Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy
Google Inc., Mountain View, CA
{goodfellow, shlens, szegedy}@google.com

ABSTRACT

Several machine learning models, including neural networks, consistently mis-
classify adversarial examples—inputs formed by applying small but intentionally
worst-case perturbations to examples from the dataset, such that the perturbed in-
put results in the model outputting an incorrect answer with high confidence. Early
attempts at explaining this phenomenon focused on nonlinearity and overfitting.
We argue instead that the primary cause of neural networks’ vulnerability to ad-
versarial perturbation is their linear nature. This explanation is supported by new
quantitative results while giving the first explanation of the most intriguing fact
about them: their generalization across architectures and training sets. Moreover,
this view yields a simple and fast method of generating adversarial examples. Us-
ing this approach to provide examples for adversarial training, we reduce the test
set error of a maxout network on the MNIST dataset.




FGSM

» Objective:

5 IR 03+ 8

= Solution:
§ =€ -sign(V,£(f,x,y))

= Intuition: Linearize the loss function around the parameter f.



FGSM: Optimality Analysis
» Tayler expansion of a function f(x) at a:

f'(a) f(a)

5 (x —a)+ o (x —a)*+ -

fx) = fla) +

» The first order Tayler expansion of loss at an example x :

(f,x+6,y) = (x+6) =~ £'(x) +V&'(x)'6

A Unified Gradient Regularization Family for Adversarial Examples. ICDM2015.



FGSM: Optimality Analysis
» The first order Tayler expansion of loss at an example x, :

(f,x+8,y)=42'(x+6) = £ (x) + V&' (x)'6

= \We have

P~ T
[ ST+ O = | max 600 + TE)TO

» Clearly linear in §
» Use the standard Lagrange multiplier method
= Solution:
0 =¢€-sign(Ve(x))



FGSM Results

Error: 1.6%

Error: 99%

(FGSM with

€ = 0.25)
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= Results with a linear model

» FGSM generates (almost) optimal perturbations.
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General Framework
Gradient regularization family (1/2)

1

Vet (f,x,7) )F
|vx£(fJ X, y)”p*

d=¢€" Sign(fo(f, X, y)) (|

1

= p*is the dual of p, i.e, -

+i=1
p

A Unified Gradient Regularization Family for Adversarial Examples. ICDM2015.



General Framework
Gradient regularization family (2/2)

1

fo(f: X ZV) -1

(uvxf(f,x,y) p*)
Vo L(f, %)\

V. 2(f, x, y>||1)

lim € - sign(V,2(f,x,y))

p—)OO

= € - slgn(fo(f» X, y)) (l
= € - Slgn(fo(f» X, y))

|

We have FGSM!

A Unified Gradient Regularization Family for Adversarial Examples. ICDM2015.



“Iterative” FGSM

» FGSM finds an adversarial example under the “linear”
assumption

» The loss landscape is more complex
» “Tterative” FGSM (by Google)
= ADVERSARIAL MACHINE LEARNING AT SCALE (ICLR2017)

» Project Gradient Descent (PGD)
» Towards Deep Learning Models Resistant to Adversarial Attacks (ICLR2018)



PGD

» One-step attack

x + €-sign(V,£(f,x,v))

» Multi-step attack

x =T, e(xt + a - sign(V, . 2(f, x%, y)))

Towards Deep Learning Models Resistant to Adversarial Attacks (ICLR2018)



Adversarial Training

» Objective:
minﬁlmaxf X+ 0 ]
in £ [max £(f,x +5,)
Approximate via an atta.l.ck algorithm (e.qg., PGD)
CIFAR10 (e = 8/255)
Simple| Wide  Simple| Wide Simple| Wide
Natural 92.7% (95.2% 87.4% (90.3% 79.4% |87.3%
FEGSM 27.5% (32.7% 90.9% (95.1% 51.7% |156.1%
PGD 0.8% |3.5% 0.0% | 0.0% 43.7% 45.8%

(a) Standard training (b) FGSM training (c) PGD training



What's the Cause of Adversarial Examples?

Adversarial vulnerability is a direct result of sensitivity to Iwell—generalizing featuresl in the data.

NeurIPS 2019

Adversarial Examples are not Bugs, they are Features

Andrew Ilyas* Shibani Santurkar* Dimitris Tsipras*
MIT MIT MIT
ailyas@mit.edu shibani@mit.edu tsipras@mit.edu

Logan Engstrom* Brandon Tran Aleksander Madry
MIT MIT MIT
engstrom@mit.edu btranl115@mit.edu madry@mit.edu
Abstract

Adversarial examples have attracted significant attention in machine learning, but
the reasons for their existence and pervasiveness remain unclear. We demonstrate
that adversarial examples can be directly attributed to the presence of non-robust
features: features (derived from patterns in the data distribution) that are highly
predictive, yet brittle and (thus) incomprehensible to humans. After capturing
these features within a theoretical framework, we establish their widespread ex-
istence in standard datasets. Finally, we present a simple setting where we can
rigorously tie the phenomena we observe in practice to a misalignment between
the (human-specified) notion of robustness and the inherent geometry of the data.




Experiment Setup

Claim: There are two features: (1) robust features and (2) non-robust features;
the non-robust features contribute to adversarial examples!

Robust dataset

w

good standard accuracy
good robust accuracy

=

Unmodified
test set

D

good standard accuracy
bad robust accuracy

Training image

Non-robust dataset
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How to Construct Datasets

Initialized with
a randomly chosen image

Training image
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Non-robust dataset
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Results

“airplane” “ship” “dog” “truck” “frog”

B td accuracy B Rdv accuracy (g =0.25)

Test Accuracy on D (%)

Std Training Adv Training Std Training Std Training
using D using D using Dy using Dy

» The standard model picks (noisy-looking) non-robust features to
classify images; thus, it is susceptible to adversarial perturbations.
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Wait! Practical?

How can an attacker inject an adversarial example

in practice?

22



Adversarial Glasses

(b) Eyeglass frame

(c) Impersonating “Milla
Jovovich”

(a) “Milla Jovovich”

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition (CCS16)
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Adversarial Patch

place sticker on table

os

banana

toaster

Adversarial Patch (NIPS17 Workshop)

Classifier Output

slug

snail

Classifier Output

—
banana

piggy_bank

orange

spaghetti_

24



Adversarial Patch for Object Detectors

Fooling Automated Surveillance Cameras: Adversarial Patches to Attack Person Detection (CVPR19 Workshop)
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Physical Adversarial Examples

Model Physical Dynamics by Sampling
from Distribution

Mask

Input

000 |

O35 ousat [T

o T
falz)

t Target

stationary + Drive-By Testing

Lol T

F‘ért u-rl:";ed Stop Sign Undr
Varying Distances/Angles

Robust Physical-World Attacks on Deep Learning Visual Classification (CVPR18)
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Black-Box Attacks

» What if we don't have a target model?

méin l,(x + J) subject to: ||J||2 < p,queries < B

Algorithm 1 SimBA in Pseudocode
1: procedure SIMBA(x,y, @, €)

2: 6=0
33 p=pu(ylx) Observation: random noise in low
4. while p, = max, py,do .. frequency space is more likely to be
5: Pick randomly without replacement: q € Q“~ adversarial
6: for o € {¢,—¢} do
7: P =pu(y [ x+d+aq)
8: if p,, < p, then
9: d =0+ aq
10: p=p
11: break

return o

Simple Black-box Adversarial Attacks (ICML19)



Conclusion

» Small adversarial perturbations degrade the perforance of
predictors.

» Adversarial perturbations are realizable.
» Phyiscal adversarial examples
» Eyeglass
» Adversarial patch

» Even without complete knowledge on a model, we can generate
adversarial perturbations.

= How can we learn a neural network that is robust to adversarial
perturbations with guarantees?
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