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Motivation

e Conformal prediction is fine but requires post-processing (i.e., human-in-the-loop)

Toy terrier
¢ H ={ Bulldog }
( L poodle —‘

Toy terrier!

e Can we use this in fully automated systems (i.e., without-human-in-the-loop)?
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Learning Setup

A standard supervised learning setup:
e X': an example space
@ V: an example space
@ D: a distribution over X x Y
@ Z ~ D™ a calibration set
e F: a set of selective predictors (will introduce soon)

@ loss: a false discovery rate (will introduce soon)
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A Selective Classifier

Definition (a selective classifier)

$() = {@@) f £, g(@) = 7

IDK otherwise

f: X xY — Rx>q: a scoring function

7 : X — Y. a classifier, ie.,

g(z) = argmax f(z,y)
yey

7 € R>0: a parameter
IDK: “I don’t know”
S: X — YU{IDK}: a selective classifier
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A Goodness Metric: False Discovery Rate

Definition (false discovery rate (FDR))
]P{y £ $(z) ‘S’(m) ] IDK}

o the FDR is equivalent to the precision

@ The following equivalence may be useful:

P{y # S(@) |S(x) # 10K} = P{y # () [S(x) # T0K
=P{y #9(@) |/(@,9() = 7}

@ uncomfortable fact: the FDR is not monotonic in 7 (you will see why)
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Goal: Achieving a PAC-Style Guarantee

Goal
Find a PAC algorithm that returns S’ ie.,

P {IP{y £ S(x) ’S(:v) ” IDK} < 5} >1-4
@ This is an ideal goal.

@ This PAC guarantee for any € can be achievable under some condition.
» This is related to the monotonicity of the FDR.
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Assumption

Assumption (i.i.d.)

Labeled examples are independently drawn from the same (and unknown) distribution D over
labeled examples X x ).

@ Same as the assumption for PAC algorithms
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Motivation: Direct Comparison to Conformal Prediction

Conformal Prediction
@ Predictor form:

C(x) = {y €y ‘ fz,y) > T}
o Guarantee: a coverage guarantee
P{y¢C)}<e

@ Assumption: exchangeable or i.i.d.

Selective Prediction
@ Predictor form:

S(x) = {@(m) if f(z,9(z) > 7

IDK otherwise

@ Guarantee: a false-discovery rate
guarantee

P{y + 8(x) ‘S(x} + IDK} <e

@ Assumption: i.i.d.
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Algorithm

Idea

e Enumerate all candidate hypotheses (i.e., a set of 7s), i.e,
f@, 9(z), s fai, 9(20)), - - f(@n, §(zn))  for (z4,7) € Z
@ For each hypothesis, compute a binomial tail bound, i.e.,
Py # i) | F(2,5(2) 2 7} < Usinomial(7is-)for 7 = f(zi, 5(a1))
@ Choose a hypothesis that has the binomial tail bound smaller than ¢, i.e.,
UBinomial (Tis -+ ) < €

@ Minimize 7 to maximize efficiency, i.e., recall the definition of the selective classifier:

S(z) = {Q@) if f(z,9(z) >

IDK otherwise
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Algorithm

Algorithm 1 Selective Classifier Learning Algorithm A [Geifman and El-Yaniv, 2017]
1: procedure SC(f, 9, Z, ¢, §)

2: Z < SORT(Z) (>) Sort Z in an increasing order of f(z;,§(z:))
3 (L9« (1,12))

4 for i = 1 to [log, |Z|] do

5 T @i/ D@y 21)

6: 29— {(x,y) € Z| f(z,9(x)) > 7}
7 kY Depyez Ly # 9(x))

8 U  Uginom (K93 12091,8/[log, | 2]1)
9: if U < ¢ then

10: i [(i+14)/2]

11: else

12: i [(i+17)/2]

13: end if

14: end for

15: return T(i), u®
16: end procedure

10/16



FDR Guarantee

Theorem
For any f and D, we have

Ply# (@) | f@,5() 2 7} <0

with probability at least 1 — §, where the probability is taken over Z ~ D™ and (7, U) = A(Z).

o U < € may not be true
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FDR Guarantee: A Proof Sketch |

Let
o R(r) =P{y #9(x) | f(z,§(x)) = 7}

@ M is a data-dependent set of hypotheses with a fixed size, i.e., |H| = m = [logy n]
o Zr ={(x,y) € Z| f(x,9(x)) = 7}
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FDR Guarantee: A Proof Sketch Il

Then, we have

P {R(i—) > U} <P {3r e H,R(r) > Uror(r, 6 /m, Z,)}

ZIP {R(7;) > Urpr(7),6/m, Z:,)}
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Ideal Case (when our life gets easy)

Definition (prefect calibration)
We say that a scoring function f is perfectly calibrated with respect to D and g if

P{y=g(z) | f(z,9(z)) =t} =t,Vt € [0,1]
@ Recall the definition of precision, i.e.,
P{y=g(z) | f(z,9(z)) > 7}

e If f is perfectly calibrated, we have
d P{y=4g() | f(z,§(z)) > 7} P{f(z,§(x)) = 7}

d
Py =9@) | f(z,9(x) = 7} = b a0 5 )
_ d 1Py =9() | f(z,§(2)) = } P{f(,§(x)) = t}dt
dr JIP{f(x, §(x)) = thdt

_d [JP{f (e () = thdt _
dr [TP{f(x, (x)) = t}dt
@ This means precision is monotonically non-decreasing in 7 [Lee et al., 2024] — this is a
good property! 14/16




Conclusion

@ Selective prediction could be a good alternative for conformal prediction.

@ Selective prediction may not satisfy the PAC guarantee.
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