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Conformal predictors are set predictors that are automatically valid in the sense of
having coverage probability equal to or exceeding a given confidence level. Inductive
conformal predictors are a computationally efficient version of conformal predictors
satisfying the same property of validity. However, inductive conformal predictors have
been only known to control unconditional coverage probability. This paper explores
various versions of conditional validity and various ways to achieve them using inductive

conformal predictors and their modifications.
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@ Hopeless :( [Lei and Wasserman, 2014]
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PAC-style coverage guarantee
P{P{ygéé(x)} §5} >1-4

@ This implies that we need the i.i.d. assumption.
e (' is learned from a calibration set Z,, ~ D".

e We will interpret conformal prediction to a learning problem [Valiant, 1984].

» See tolerance region [Wilks, 1941] and training-conditional inductive conformal prediction
[Vovk, 2013] for an equivalent result.

@ The main goal is to find a PAC learning algorithm for the set of conformal sets.
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Conformal Prediction with a PAC Guarantee
Learning-theoretic View [Park et al., 2020]

Parameterized conformal sets
Clx) ={ye Y| flz,y) >7}

@ How to find 7 that satisfies the PAC guarantee?
» Finding a PAC learning algorithm
» Why not use 7 = 07
* No! Produces trivial conformal sets.
@ How to minimize the size of conformal sets?

» Another objective of the PAC learning algorithm
» Minimize the size, while satisfying the PAC guarantee.
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Minimizing Set Size
Secondary goal: minimizing set size

maximizing 7 =  minimizing the expected set size

@ Recall the conformal set definition:

Cr(z) ={ye V| f(z,y) > 7}

@ We have
1< — \V/JUacrz(l‘) - Cﬁ (x)’

i.e., size is monotonically decreasing in 7.

@ Maximizing 7 eventually minimizes the expected size, i.e.,

E{5(C(2))} < sup S(C(x))

» S(-): a size metric
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PAC Learning Algorithm

ABinom : 7= max T subj. to UBinom(Cry Zn,0) < €
TGRZO

@ Aginom returns 7 = 0 if the constraint is infeasible.
@ For the PAC guarantee, we need to bound P{y ¢ C;(x)}
» Bound the expected error via a concentration inequality!

e Recall that Ugijnom(Cr, Zn,d) is the binomial tail bound, i.e.,

Usinom (Cir Zn,y 8) == inf {0 e 0,1] ( F(E,;n,0) < 5}

» F'(k;n,e): the cumulative distribution function of the binomial distribution with n trials and
success probability €

> Eri=300 1(yi & Cr(wi)
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PAC Guarantee

Theorem (Vovk [2013], Park et al. [2020])
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P{P{y¢ C@@)}<e}>1-5,

where the inner probability is taken over a labeled example (x,y) ~ D, the outer probability is
taken over i.i.d. labeled examples Z, ~ D", and C = Aginom(Zy)-
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PAC Guarantee

Theorem (Vovk [2013], Park et al. [2020])
The algorithm Apginom is PAC, i.e., for any f, e € (0,1), 6 € (0,1), and n € Z>o, we have
P{P{y¢ C@@)}<e}>1-5,

where the inner probability is taken over a labeled example (x,y) ~ D, the outer probability is
taken over i.i.d. labeled examples Z, ~ D", and C = Aginom(Zy)-

e Vovk [2013] provides the original proof.
e Park et al. [2020] interpret it in a learning-theoretic view
@ Park and Kim [2023] provide a simplified proof.
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PAC Guarantee: A Proof Sketch
Define:
o C;: a prediction set C' with a parameter 7

o L(Cr) =P{y ¢ Cr(z)}
° Ha = {T € R>0 ’ L( ) > e’-:} — Suppose that R>¢ is a set of finely quantized real numbers.
@ 7 :=infH,.

We have:
{ (Cgion(2)) > 6} IP{HT € He, Usinom (Cr, Z,6) < 5}
< ]P{Us.nom (Cpe, 2,8) < g} (1)
gIP{L ) > & A Usinom (Cr+, Z,6) <€}
S P{L > UBlnom(C‘r 7Z 6)}
<9, )
@ (1): 1(y ¢ Cr(x)) and Uginom are non-decreasing in 7 (i.e., Lemma 2 in [Park et al., 2022])
@ (2): the property of the binomial tail bound Uginom-
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Application: Image Classification
Qualitative Results

Certain

Uncertain

Chihuahua,

{king penguin} toy terrier,
Italian greyhound,

Boston bull,

miniature pinscher

barber chair,
hand blower,
medicine chest,
paper towel,
plunger,
shower curtain,
soap dispenser,
—
toilet seat,
tub, washbasin,
washer, toilet tissue

[abel: predicted label, green: true label

@ As an image (and a model’'s understanding) is uncertain, the set size gets larger.
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Application: Image Classification

Quantitative Results
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Application: Regression

A point prediction fails, but a “conformal set” contains the true bounding box

White: Ground truth,  Red: a point prediction, ~ Green: Over-approximation of a conformal set

@ The visualized conformal set is the bounding box that covers all boudning boxes in a
conformal set.
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Conclusion

@ PAC conformal prediction constructs a conformal set with the PAC guarantee.
» This is conformal prediction conditioned on a calibration set.

@ Interesting questions:
» Can we consider group-conditional conformal prediction?
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