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Motivation: Conditional Guarantee?
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Conditional Guarantees
Marginal Guarantee:

P

{
Yn+1 ∈ Ĉ(Xn+1)

}
≥ 1− α

X-conditional Guarantee:

P

{
Yn+1 ∈ Ĉ(x)

∣∣∣Xn+1 = x
}
≥ 1− α

Hopeless :( [Lei and Wasserman, 2014]

Training-conditional Guarantee (=PAC Guarantee):

P

{
P

{
y ∈ Ĉ(x)

}
≥ 1− ε

}
≥ 1− δ

We will explore this!
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y ∈ Ĉ(x)

}
≥ 1− ε

}
≥ 1− δ

We will explore this!
3 / 15



PAC Guarantee: A Goodness Metric

PAC-style coverage guarantee

P

{
P

{
y /∈ Ĉ(x)

}
≤ ε

}
≥ 1− δ

This implies that we need the i.i.d. assumption.

Ĉ is learned from a calibration set Zn ∼ Dn.

We will interpret conformal prediction to a learning problem [Valiant, 1984].
▶ See tolerance region [Wilks, 1941] and training-conditional inductive conformal prediction

[Vovk, 2013] for an equivalent result.

The main goal is to find a PAC learning algorithm for the set of conformal sets.
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}
≤ ε

}
≥ 1− δ

This implies that we need the i.i.d. assumption.
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Conformal Prediction with a PAC Guarantee
Learning-theoretic View [Park et al., 2020]

Parameterized conformal sets

C(x) := {y ∈ Y | f(x, y) ≥ τ}

How to find τ that satisfies the PAC guarantee?
▶ Finding a PAC learning algorithm
▶ Why not use τ = 0?

⋆ No! Produces trivial conformal sets.

How to minimize the size of conformal sets?
▶ Another objective of the PAC learning algorithm
▶ Minimize the size, while satisfying the PAC guarantee.
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Minimizing Set Size

Secondary goal: minimizing set size

maximizing τ =⇒ minimizing the expected set size

Recall the conformal set definition:

Cτ (x) := {y ∈ Y | f(x, y) ≥ τ}

We have
τ1 ≤ τ2 =⇒ ∀x,Cτ2(x) ⊆ Cτ1(x),

i.e., size is monotonically decreasing in τ .

Maximizing τ eventually minimizes the expected size, i.e.,

E {S(C(x))} ≤ sup
x

S(C(x))

▶ S(·): a size metric
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PAC Learning Algorithm

ABinom : τ̂ = max
τ∈R≥0

τ subj. to UBinom(Cτ , Zn, δ) ≤ ε

ABinom returns τ̂ = 0 if the constraint is infeasible.

For the PAC guarantee, we need to bound P{y /∈ Cτ (x)}
▶ Bound the expected error via a concentration inequality!

Recall that UBinom(Cτ , Zn, δ) is the binomial tail bound, i.e.,

UBinom(Cτ , Zn, δ) := inf
{
θ ∈ [0, 1]

∣∣∣ F (Eτ ;n, θ) ≤ δ
}

▶ F (k;n, ε): the cumulative distribution function of the binomial distribution with n trials and
success probability ε

▶ Eτ :=
∑n

i=1 1 (yi /∈ Cτ (xi))
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PAC Guarantee

Theorem (Vovk [2013], Park et al. [2020])

The algorithm ABinom is PAC, i.e., for any f , ε ∈ (0, 1), δ ∈ (0, 1), and n ∈ Z≥0, we have

P

{
P

{
y /∈ Ĉ(x)

}
≤ ε

}
≥ 1− δ,

where the inner probability is taken over a labeled example (x, y) ∼ D, the outer probability is
taken over i.i.d. labeled examples Zn ∼ Dn, and Ĉ = ABinom(Zn).

Vovk [2013] provides the original proof.

Park et al. [2020] interpret it in a learning-theoretic view

Park and Kim [2023] provide a simplified proof.
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}
≤ ε

}
≥ 1− δ,

where the inner probability is taken over a labeled example (x, y) ∼ D, the outer probability is
taken over i.i.d. labeled examples Zn ∼ Dn, and Ĉ = ABinom(Zn).
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PAC Guarantee: A Proof Sketch
Define:

Cτ : a prediction set C with a parameter τ
L(Cτ ) := P{y /∈ Cτ (x)}
Hε := {τ ∈ R≥0 | L(Cτ ) > ε} – Suppose that R≥0 is a set of finely quantized real numbers.
τ∗ := inf Hε

We have:

P

{
L(CABinom(Z)) > ε

}
≤ P

{
∃τ ∈ Hε, UBinom(Cτ , Z, δ) ≤ ε

}
≤ P

{
UBinom(Cτ∗ , Z, δ) ≤ ε

}
(1)

≤ P
{
L(Cτ∗) > ε ∧ UBinom(Cτ∗ , Z, δ) ≤ ε

}
≤ P

{
L(Cτ∗) > UBinom(Cτ∗ , Z, δ)

}
≤ δ, (2)

(1): 1 (y /∈ Cτ (x)) and UBinom are non-decreasing in τ (i.e., Lemma 2 in [Park et al., 2022])

(2): the property of the binomial tail bound UBinom.
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Application: Image Classification
Qualitative Results

As an image (and a model’s understanding) is uncertain, the set size gets larger.
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Application: Image Classification
Quantitative Results
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Application: Regression

The visualized conformal set is the bounding box that covers all boudning boxes in a
conformal set.
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Conclusion

PAC conformal prediction constructs a conformal set with the PAC guarantee.
▶ This is conformal prediction conditioned on a calibration set.

Interesting questions:
▶ Can we consider group-conditional conformal prediction?
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