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...we are hedging the prediction — we are adding to it a statement about how strongly we believe
it. — Vovk et al., 2005
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Motivation

Conventional prediction:
f:X—=)

Conformal prediction:
C:x—2

@ Conventional prediction is a “point” prediction.
@ Conformal prediction is a set-valued prediction.

@ The set contains “likely-correct” alternative options.
» The set size measures “uncertainty” !

@ Why not confidence prediction? User-friendly?
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Motivation: Decision Making
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Why “Conformal”?

| mathoverflow

Home How is the "conformal prediction" conformal?

puBLIC Asked 6 years, 5 months ago  Modified 6 months ago  Viewed 2k times

Thanks for your interest. The term “conformal prediction” was suggested by Glenn Shafer, and
at first | did not like it exactly for the reason that you mention: it has nothing (or very little) to do
with conformal mappings in complex analysis. But then | discovered other meanings, even in
maths; e.g., Wikipt 1 page for “conformal”:

has five on its

« Conformal film on a surface (same thickness)
« Conformal fuel tanks on military aircraft

« Conformal coating in electronics

« Conformal hypergraph, in mathematics

« Conformal software, in ASIC Software

So the word did not look taken to me anymore. The expression that we had used before Glenn
proposed “conformal prediction” was even worse (“transductive confidence machine”).

Thanks to Hengrui Luo for drawing my attention to this question.

As for question (2), the answer depends on which robust predictors you have in mind. The
predictors with most similar properties are the ones in classical statistics (such as the standard
prediction intervals in linear regression based on Student's t distribution); the main difference is
that they are parametric. There is a predictive version of tolerance intervals in nonparametric
statistics, but their treatment of objects (x parts of observations (x,y), where y are labels) is
limited. Upper bounds on the probability of error given by standard PAC predictors are often
too high to be useful.
Share Cite Improve this answer Follow answered Apr 13, 2017 at 7:35
Vladimir Vovk
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Conformal (Prediction) Sets

Definition (conformal set)

Cz) ={yel| flz,y) > q}
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Conformal (Prediction) Sets

Definition (conformal set)

Clx) ={ye Y| flz,y) > q}

@ We are using more recent notations based on inductive conformal prediction.
» The notations are from Lei et al. [2018], Vovk et al. [2005], Tibshirani et al. [2019], and their
combination.
» Note that inductive conformal prediction [Papadopoulos et al., 2002] is an efficient variation
of full conformal prediction [Vovk et al., 2005].
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Conformal (Prediction) Sets

Definition (conformal set)

Clx) ={ye Y| flz,y) > q}

@ We are using more recent notations based on inductive conformal prediction.

» The notations are from Lei et al. [2018], Vovk et al. [2005], Tibshirani et al. [2019], and their
combination.

» Note that inductive conformal prediction [Papadopoulos et al., 2002] is an efficient variation
of full conformal prediction [Vovk et al., 2005].

o f: X xY — R: a conformity scoring function

» Measures how well (x,y) conforms to a trained model f (via a proper training set)
» f(z,y) is a likelihood of x for being y

@ ¢: A parameter to be chosen by an algorithm.
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Conformity Scoring Functions |

Conformity scoring functions can be (almost) any model!

Example (classification)
f(xvy) = fcls(l"»y)

@ f.s: a classification model, e.g., resnet
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Conformity Scoring Functions |l

Conformity scoring functions can be (almost) any model!

Example (standard regression in 1-dimension)
fla,y) = —|p(z) -yl

@ LI a regressor
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Conformity Scoring Functions Il

Conformity scoring functions can be (almost) any model!

Example (probabilistic regression)
f(@,y) = N(y; p(x), 07 4())

@ i.e., a Gaussian model with a diagonal covariance matrix [Nix and Weigend, 1994])

@ d: The dimension of ).
o Implementation: p(x) = fmu(x) and Ino? = fuar ()

» fmu(x): a neural network
> fuar(z): a neural network
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Back to Conformal Sets

Definition (conformal sets)
Clz) ={ye V| flz,y) 2 ¢}

@ A conformity scoring function f is given.
@ f is a target to measure uncertainty.

@ How to choose ¢?
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Assumption: Exchangeability

Assumption

A sequence of random variables X1, Xo, ..

. Is exchangeable if for any permutation o, the
following holds:

IP{Xl =:U1,X2 =:U2,...} ZIP{XO.(l) =.T1,XU(2) Z:UQ,...}.
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Assumption: Exchangeability

Assumption

A sequence of random variables X1, Xo, ..

. Is exchangeable if for any permutation o, the
following holds:

IP{Xl ::UI,XQ :LL‘Q,...} :IP{XO'(l) :xlan(Q) ::UQ,...}.

@ The i.i.d. assumption implies the exchangeability assumption (why?).
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A Goodness Metric: Coverage Guarantee

Definition (coverage guarantee)

IP{YnH c C’(Xn+1)} >1-a
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Definition (coverage guarantee)
IP{YnH € C’(Xn+1)} >1-a
o (X;,Y;))e X xYfori=1,...,n: atraining set
@ The probability is taken over (X;,Y;) fori=1,...,n+ 1.
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A Goodness Metric: Coverage Guarantee

Definition (coverage guarantee)

P{Ynﬂ c C’(Xn+1)} >1-a

o (X;,Y;))e X xYfori=1,...,n: atraining set

@ The probability is taken over (X;,Y;) fori=1,...,n+ 1.

o (X,,Y;) fori=1,...,n+ 1: the exchangeable samples (thus the i.i.d. samples)
o C: A conformal set constructed by the training set

@ 1—a€(0,1): A desired coverage rate
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Quantile

Quantile of a Distribution

The level 8 quantile of a distribution F’:
Definition (quantile)
Quantile(8; F) == inf{z | P{Z < z} > g}

e F": a distribution over the augmented real line, R U {o0}
e I/ ~F

» allows multiple instances of the same element
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Quantile

Quantile of an Empirical Distribution

The level 8 quatile of an empirical distribution of the values v1.y:

Definition (quantile)

Quantile(3; v1.,) == Quantile (ﬁ; % Z 5vi>
i=1

® vy = {v1,...,v,}: an unordered multiset
@ J,: a d-distribution (i.e., a point mass at a)
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Quantile Algorithm

Definition (quantile algorithm)
Given (Xl, Yl), 6c00g (Xn, Yn),

G1—a = Quantile(1 — o, V1., U {o0}),
where V; = — f(X;, ;).

@ The implementation is as simple as finding the k-th smallest value.
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Coverage Guarantee of the Quantile Algorithm

Theorem (Vovk et al. [2005], Lei et al. [2018])

Assume that (X;,Y;) fori € {1,...,n+ 1} are exchangeable. For any scoring function f and
any a € (0,1), denote the conformal set by

é(:b‘) = {y € y ‘ - f(xay) S (jl—a}-
Then, we have
P{ Y41 € C(Xnt1) } 21—,
where the probability is taken over (X;,Y;).

@ This is a marginal coverage guarantee.
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Coverage Guarantee of the Quantile Algorithm: Intuition

Conformity score

f(x1,y2)

Conformal set
fuy)|-==-==-= -~

f(xn'yn) ————————————————— L

V2 = cat label Y, = cat

A

X1

@ A conformal set contains the most “true scores”.
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Coverage Guarantee of the Quantile Algorithm: A Proof Sketch

@ Due to the symmetric construction of scores (using the same scoring function f), for any
permutation 7 we have

d d
(Zl, .. -7Zn+1) = (Zﬂ.(l), .. .7Zﬂ-(n+1)) - (Vl, .. ~7Vn+1) = (Vﬂ'(l)7 .. '7V7'r(n+1))

where Z; == (X;,Y;).
As (Z1,...,Zy41) are exchangeable, so are (V4,..., V,41).
Use the “quantile lemma” by letting 8 =1 — ¢, i.e,

]P{VnH < Quantile(1 — a; V4. U {oo})} >1—aq.

Observe that

Yii1 € C(Xny1) <= Viy1 < Quantile(1 — a, Vi, U {o0}).

@ Thus, we have
P{Yn+1 S é(Xn+1)} 2 1—a.
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Quantile Lemma

Lemma (Tibshirani et al. [2019])

If Vi,...,Vat1 are exchangeable random variables, then for any 5 € (0,1), we have
1E>{1/n+1 < Quantile(B; Vi U {oo})} > B.

@ The key lemma for conformal prediction
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Quantile Lemma: A Proof Sketch |

@ One fact about quantiles of a discrete distribution F' with support points a1,...,a; € R:

» Denote ¢ := Quantile(; F)
» Reassign the points a; strictly larger than g to arbitrary values also strictly larger than g,

yielding a new distribution F’ ~
» Still we have Quantile(8; F') = Quantile(5; F')

@ Thus, we have
Vo1 > Quantile(8; Vi, U {oo}) <= V.11 > Quantile(5; Viipt1)-
@ This implies

113{1/71+1 < Quantile(8; Vi U {oo})} = ]P{Vn+1 < Quantile(; VMH)}
> B+ 1] (1)
n+1
> B(n+1)

n+1 =5

22/34



Quantile Lemma: A Proof Sketch Il

e Why (1)7
» By exchangeability, we have for any integer k € {1,...,n+ 1},
IP{V <V } > i
n+l1 > Vig] ( Z n+ 17

where [k] is the k-th smallest value of Vi,...,V,11.
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Quantile Lemma: A Proof Sketch IlI

» Suppose that there is no tie (see Kuchibhotla [2020] for a general proof). We have

k
IP{Vn+1 < V[k]} >P {\/ Vi = V[l]}
i=1
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Quantile Lemma: A Proof Sketch IV

» Why (2)7
* For each permutation 7, we have
P{Vi <+ < Vasa} =P{(V1,...,Vat1) € A}
:IP{(VW(U,..A?VW(n_;,_l)) S A} (3)
=P{Ve) < < Vamsn)}

where A == {(z1,...,Zn+1) | 21 < -+ < xpt1} and (3) holds due to the exchangeability
assumption.
* This means that “exchangeability” implies “uniform probability over orders”
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Power of Conformal Prediction

The coverage guarantee is drawn with minimal assumptions.
@ It does not make assumptions on a distribution except for the exchangeability.

@ The guarantee holds for any conformity scoring function.
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Size of Conformal Sets

@ Application-dependent issues

» classification: set size
> 1-D regression: interval length
» multi-dimentional regression: e.g., volume

o Larger set: uncertain (e.g., the entire set)
@ Smaller set: more certain (e.g., a singleton)

@ We will see some analysis in PAC conformal prediction.
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Interesting Variation: Time-series Forecasting

Conformal Time-series Forecasting [Stankeviciute et al., 2021]

1, Q1
(yg:t)vyiﬁl:tJrH) i =

2 2
(y§:¢),y§+)1;:+H)

independent
= (exchangeable)
observations

|

(z1,91) v (xr,y7)

\ J
T

temporally dependent
(non-exchangeable)
observations

@ Conformal prediction for independent time-series data
> e.g., temperature change for each year
28 /34



Conformal Time-series Forecasting |

Problem
Setup:
® yrv = (Yt,Yir1,- .-, yr) € RYx ... R% a time-series of d-dimensional observation
> Letd=1

@ H: a prediction horizon

® Uyi1.0+p: predicted future observations (e.g., the output of a RNN)
® Cpip(y14): a prediction interval at time ¢t 4+ h

> CtJrh(yl:t) = [gta_h,@g{-h]
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Conformal Time-series Forecasting |l

Problem

Desired coverage guarantee:

P{Vh €{l,....H}, yrn € Ct+h(y1:t)} >l-«a

@ The probability is taken over yq.441.

@ 1 — «a: a desired coverage rate

Goal: Find Cpyp, forall h e {1,...,H}.
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Conformal Time-series Forecasting
Approach

e D = {(yg%,ygil:T+H)}ﬁl: a calibration set
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Conformal Time-series Forecasting
Approach

e D = {(yg%,ygil:T+H)}ﬁl: a calibration set
@ Observe that

]P{Elh €{l,....H}, yn ¢ Ct+h(y1:t)} < > P{yn & Conlye)}
hed{l,...,H}

<«
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Conformal Time-series Forecasting
Approach
e D= {(yifz‘p,ygil:T+H)}ﬁl: a calibration set
o Observe that

]P{Elh €{l,....H}, yn ¢ Ct+h(y1:t)} < > P{yn & Conlye)}
hed{l,...,H}

<«

> (4) holds due to the union bound.
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Conformal Time-series Forecasting
Approach
e D= {(yifz‘p,ygil:T+H)}ﬁl: a calibration set
o Observe that

]P{Hh €{l,....H}, yn ¢ CtJrh(yl:t)} < > P{yn & Conlye)}
hed{l,...,H}

<«

> (4) holds due to the union bound.
> (5) holds if P{yiyn ¢ Crin(y1:)} < {
@ Due to the standard conformal prediction, we can find Cyyp, such that

(07

P{yern & Coenlyra)} < -
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Conclusion

e Conformal prediction is a powerful tool to construct a prediction set (for measuring
uncertainty) with correctness guarantees.

@ Conformal prediction has many applications due to its “distribution-free” and
“scoring-function-free” nature.

@ The original conformal prediction framework can be extended to “conditional” cases
(e.g., PAC conformal prediction).
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