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Motivation: Distribution Shift

The main assumption of conformal prediction: exchangeability or i.i.d.

In practice, this is fragile due to distribution shifts.

Type of distribution shifts
▶ Covariate shift
▶ Label shift
▶ ...
▶ Adversarial shift
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Covariate Shift

covariate shift assumption

p(y|x) = q(y|x) but possibly p(x) ̸= q(x)

Learning setup: follows domain adaptation, i.e.,
▶ There is only one shift
▶ p(x, y): a source distribution
▶ q(x, y): a target distribution
▶ S ∼ pm(x, y): i.i.d. label examples from source
▶ T ∼ qn(x): i.i.d. unlabeled examples from target

Conformal prediction under covariate shift
▶ Tibshirani et al. [2019]: provides the coverage guarantee
▶ Park et al. [2022]: provides the PAC coverage guarantee
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Label Shift

label shift assumption

p(x|y) = q(x|y) but possibly p(y) ̸= q(y)

Learning setup: follows domain adaptation, i.e.,
▶ There is only one shift
▶ p(x, y): a source distribution
▶ q(x, y): a target distribution
▶ S ∼ pm(x, y): i.i.d. label examples from source
▶ T ∼ qn(x): i.i.d. unlabeled examples from target

Conformal prediction under label shift
▶ Podkopaev and Ramdas [2021]: provides the coverage guarantee
▶ Si et al. [2023]: provides the PAC coverage guarantee
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Adversarial Shift

Learning setup: follows an online learning setup, i.e.,
▶ there are multiple shifts over time
▶ pt(x, y): a distribution at time t
▶ (xt, yt) ∼ pt(x, y): a labeled example sampled at time t

Assumption: no restriction on shifts

Conformal prediction under distribution shift
▶ Gibbs and Candès [2021]: provides the coverage guarantee
▶ Bastani et al. [2022]: provides the coverage guarantee for fairness
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Adaptive Conformal Prediction
Can we learn conformal sets under distribution shift?

Setup:

X : example space

Y: label space
Ct : X → 2Y : a conformal set

A learning game between a learner and nature

for t = 1, . . . , T do
Learner receives an example xt ∈ X
Learner outputs a conformal set Ct(xt) ∈ 2Y

Learner receives a true label yt ∈ Y
Learner suffers loss 1(yt /∈ Ct(xt))
Learner update a parameter of a conformal set

end for
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Adaptive Conformal Prediction
Intuition

Adaptive conformal prediction progressively adjust a prediction set such that it covers a
desired number of samples.
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A Goodness Metric: “Empirical” Coverage Guarantee

Definition (empirical coverage guarantee)∣∣∣∣∣ 1T
T∑
t=1

1

(
yt /∈ Ĉt(xt)

)
− α

∣∣∣∣∣
1− α: a desired coverage rate

T : a time horizon

Ĉt: a conformal set at time t constructed by an algorithm

It is similar to the regret definition (but not exactly the same).

We wish to bound this quantity.

Why not use the PAC guarantee?
▶ the PAC guarantee is for the batch learning.
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Algorithm
Main Ideas

Run the batch conformal prediction (CP) for each time

But adjust the coverage α for the batch CP to satisfy the empirical coverage guarantee.
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Algorithm

Algorithm 1 A standard version of Adaptive Conformal Inference [Gibbs and Candès, 2021]

1: t1 ∈ {1, . . . , T}
2: αt1 ∈ [0, 1]
3: for t = t1, . . . , T do
4: (D(t)

train,D
(t)
cal )← Randomly split the data {(xi, yi)}t−1

i=1 and obtain non-conformity scores

5: St ← Update a scoring function using D(t)
train

6: qt ← Quantile(1− αt,D(t)
cal ∪ {∞})

7: Observe xt

8: Predict Ĉt(xt)
9: Observe yt

10: Update αt+1 ← αt + γ
(
α− 1

(
yt /∈ Ĉt(xt)

))
11: end for

A conformal set: Ĉt(xt) := {y ∈ Y | St(xt, y) ≤ qt}
Until t1, the algorithm simply collects data.

The algorithm is not randomized.
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Coverage Bound

Theorem

For all T ∈ N, α ∈ (0, 1), and γ > 0,∣∣∣∣∣ 1T
T∑
t=1

1

(
yt /∈ Ĉt(xt)

)
− α

∣∣∣∣∣ ≤ max{α1, 1− α1}+ γ

Tγ

The coverage decreases by O
(
1
T

)
This holds for any sequence ((x1, y1), . . . , (xT , yT ))!

▶ If Ĉt(xt) = Y, the adversary will never win without randomization.

Suppose α1 = 0, γ = 0.01, and ε = 0.01 (which denotes the upper bound). Then, we
T = 10, 100 observations to make the empirical coverage close to a desired coverage.
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A Lemma for the Coverage Bound

Lemma

For all t ∈ N, we have
αt ∈ [−γ, 1 + γ].

Recall our update rule:

αt+1 ← αt + γ
(
α− 1

(
yt /∈ Ĉt(xt)

))
Observe that the update cannot be larger than (and equal to) γ, i.e.,

sup
t
|αt+1 − αt| = sup

t

∣∣∣γ (α− 1(yt /∈ Ĉt(xt)
))∣∣∣ < γ

▶ Thus, the claim intuitively makes sense.
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A Lemma for the Coverage Bound: A Proof Sketch

(proof by contradiction) Suppose that there is {αt}t∈N such that infk αk < −γ.
Claim: ∃t, αt−1 < 0 and at < αt−1.

▶ (proof by contradiction) Suppose ∀t, αt−1 ≥ 0 or at ≥ αt−1.
▶ If ∀t, αt−1 ≥ 0, this contradicts to infk αk < −γ.
▶ If ∀t, at ≥ αt−1, this contradicts to infk αk < −γ (recall that α1 ≥ 0)

Thus, we have the following contradiction:

αt < 0 =⇒ qt := Quantile(1− αt,D(t)
cal ∪ {∞}) =∞

=⇒ 1

(
yt /∈ Ĉt(xt)

)
= 0 (recall that Ĉt(xt) := {y ∈ Y | St(xt, y) ≤ qt})

=⇒ αt+1 = αt + γ
(
α− 1

(
yt /∈ Ĉt(xt)

))
= αt + γα ≥ αt,

which contradict to αt+1 < αt.

Similarly, we can prove that the “∃{αt}t∈N, supt αt > 1 + γ” case.
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Coverage Bound: A Proof Sketch
Let et := 1

(
yt /∈ Ĉt(xt)

)
Recall the recursive update rule, i.e.,

αt+1 = αt + γ(α− et)

Due to the recursive update rule,

αT+1 = α1 +

T∑
t=1

γ(α− et)

Due to the previous lemma,

−γ ≤ α1 +

T∑
t=1

γ(α− et) ≤ 1 + γ.

This implies

α1 − (1 + γ)

Tγ
≤ 1

T

T∑
t=1

(et − α) ≤ α1 + γ

Tγ
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Conclusion

Adaptive Conformal Inference [Gibbs and Candès, 2021] is the first approach to learn a
conformal set under distribution shifts.

This is an example of running a batch algorithm within an online algorithm.
▶ The time and memory complexity is linear in T .
▶ See a more efficient (and general) approach [Bastani et al., 2022]
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