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Is PAC Learning Okay?

Four Ingredients of Learning;:
@ Distribution D
@ Loss ¢
@ Hypothesis Space H
@ A Learning Algorithm A

Problem?
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Is PAC Learning Okay?

Four Ingredients of Learning;:
@ Distribution D
@ Loss ¢
@ Hypothesis Space H
@ A Learning Algorithm A

Problem?

The main assumption of PAC learning: D is separable by some h* € H.
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D Is Generally Not Separable

Usually we do not know a set of hypotheses H that has the true hypothesis h*.

. Ll
13 dense’

128 Max
T8 Max pooling
pooling

@ What is the architecture of neural networks that perfectly classifies ImageNet?

@ We mainly search for good hypothesis space F without any assumption on D.
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@ Concentration Inequalities

© Generalization Bounds via Uniform Convergence
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Why Concentration Inequalities?
@ Understanding the expected loss is a key in statistical learning

in R/
min (x,y, f)
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Why Concentration Inequalities?

@ Understanding the expected loss is a key in statistical learning

min E/(z
min (. y, f)
o Concentration inequalities
» A concentration inequality provides a bound around an expected value.
@ An Example: Mean estimation

» Let Xq,...,X, beiid. real-valued random variables with mean p = E[X]]
» The empirical mean is defined as

» What is the relation between p and fi,,?

7/46



Possible Argument 1

Consistency: Due to the law of large numbers,

N P
o, — =0

P e oH 1]
@ —: convergence “in probability

o If we get more data, fi,, reaches to
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Possible Argument 1

Consistency: Due to the law of large numbers,
. P
o, — =0
P e oH 1]
@ —: convergence “in probability
o If we get more data, fi,, reaches to

X Asymptotic guarantee: it does not answer on the required number of samples to reach to
the correct answer.
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Possible Argument 2

Asymptotic normality: Assuming Var(X;) = o2, due to the central limit theorem,

2

ﬂn_MgN<Ova—>
n

D e - - - ”
@ —: convergence “in distribution

o If we get more data, i, reaches to i, where the variance is decreasing at a rate of 1/n.
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Possible Argument 3

Tail bound: we wish to have a statement as follows:

P {|fin, — p| > €} < SomeFunctionOf(n,e) = 4.

@ ¢: a desired error level

@ 1 — §: the confidence of the error statement

10/46



Possible Argument 3

Tail bound: we wish to have a statement as follows:

P {|fin, — p| > €} < SomeFunctionOf(n,e) = 4.

@ ¢: a desired error level
@ 1 — §: the confidence of the error statement

v “"SomeFunctionOf(n,e) = 0" provides the required number of samples to reach a desired
level of error with a desired level of confidence.
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Hoeffding’s Inequality

Theorem
Let X1,...,X,, be independent random variables with X; € [a;,b;] for all i € {1,... ,n}.
Then, for any € > 0, the following inequality holds for Sy, == > | X;:

_ 9.2
]P{]E{Sn} — Sn > 8} < exp{znl(bz;_ai)Q}
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Hoeffding’s Inequality

Theorem
Let X1,...,X,, be independent random variables with X; € [a;,b;] for all i € {1,... ,n}.
Then, for any € > 0, the following inequality holds for Sy, == > | X;:
P{E{S,} — S, >¢}<e p{ i }
ny —Pn ZE5 SEXPI = o
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@ Why is it called a tail bound?
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Theorem
Let X1,...,X,, be independent random variables with X; € [a;,b;] for all i € {1,... ,n}.
Then, for any € > 0, the following inequality holds for Sy, == > | X;:
P{E{S,} — S, >¢}<e p{ i }
ny —Pn ZE5 SEXPI = o
> i (bi — a;)?

@ Why is it called a tail bound?
@ What's the effect of n? Suppose a; =0 and b; =1,

P {]E {Sn} _Sn > a/} < exp{—2n€’2}
n n
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Hoeffding’s Inequality

Theorem

Let Xi,..., X, be independent random variables with X; € [a;, b;] for all i € {1,
Then, for any € > 0, the following inequality holds for Sy, == > | X;:

— N
P{E{S,} — S, > e} <exp {n}
> i (bi — a;)?
@ Why is it called a tail bound?
@ What's the effect of n? Suppose a; =0 and b; =1,

P {]E {Sn} _Sn > s/} < exp{—2n€’2}
n n

e X1q,...,X, need not to follow the same distribution
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Binomial Distribution Tail Bound
A special version of the Hoeffding's inequality.

Theorem

Let X1,...,X,, beiid. random variables with X; € {0,1} and P{X; =1} =p € [0, 1] for all
i € {1,...,n}. Then, for any € > 0, the following inequality holds for S,, = > " | X;:

where F'(k;n,p) is the CDF of a binomial distribution with n trials and success probability p
and p = inf {p' € [0,1] | F(Sp;n,p’) < d}.

@ p is what we want to estimate and p is the smallest upper bound of p “described” by
observations S,,.
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Binomial Distribution Tail Bound
A special version of the Hoeffding's inequality.

Theorem

Let X1,...,X,, beiid. random variables with X; € {0,1} and P{X; =1} =p € [0, 1] for all
i € {1,...,n}. Then, for any € > 0, the following inequality holds for S,, = > " | X;:

where F'(k;n,p) is the CDF of a binomial distribution with n trials and success probability p
and p = inf {p' € [0,1] | F(Sp;n,p’) < d}.

@ p is what we want to estimate and p is the smallest upper bound of p “described” by
observations S,,.

@ This is from the Clopper-Pearson interval for estimating binomial confidence intervals.
@ From the Hoeffding's inequality, P {% —-p> E} < exp {—2n52}
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Binomial Distribution Tail Bound
A special version of the Hoeffding's inequality.

Theorem
Let X1,...,X,, beiid. random variables with X; € {0,1} and P{X; =1} =p € [0, 1] for all
i € {1,...,n}. Then, for any € > 0, the following inequality holds for S,, = > " | X;:

where F'(k;n,p) is the CDF of a binomial distribution with n trials and success probability p
and p = inf {p' € [0,1] | F(Sp;n,p’) < d}.

@ p is what we want to estimate and p is the smallest upper bound of p “described” by
observations S,,.

@ This is from the Clopper-Pearson interval for estimating binomial confidence intervals.
@ From the Hoeffding's inequality, P {% —-p> E} < exp {—2n52}
@ A tighter bound than the Hoeffding's inequality.
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McDiarmid’s Inequality

A generalized version of the Heoffding's inequality.

Theorem

Let (Xi,...,X,) € X™ be a list of n > 1 independent random variables and assume that
there exist ¢y, ...,c, > 0 such that f : X™ — R satisfies the following conditions:

}f(xl,...,xi,...,xn) ff(xl,...,x;,...,a:m)} < ¢,

foralli e {1,...,n} and any x1,...,z,, 2, € X. Let f(S) denote f(X,...,X,,), then, for
all e > 0, the following inequality holds:

5.2
PUAS) - BUO) 2 o) <en{ S
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McDiarmid’s Inequality

A generalized version of the Heoffding's inequality.

Theorem

Let (Xi,...,X,) € X™ be a list of n > 1 independent random variables and assume that
there exist ¢y, ...,c, > 0 such that f : X™ — R satisfies the following conditions:

}f(xl,...,xi,...,xn) ff(xl,...,x;,...,a:m)} < ¢,

foralli e {1,...,n} and any x1,...,z,, 2, € X. Let f(S) denote f(X,...,X,,), then, for
all e > 0, the following inequality holds:
— 9
P{f(S) -E{f(S)} >¢e} <expy =5 (-
D im1 G
@ Useful concentration inequality for a more complex function than a mean value under the

“bounded difference” .
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McDiarmid’s Inequality

A generalized version of the Heoffding's inequality.

Theorem

Let (Xi,...,X,) € X™ be a list of n > 1 independent random variables and assume that
there exist ¢y, ...,c, > 0 such that f : X™ — R satisfies the following conditions:

}f(xl,...,xi,...,xn) ff(xl,...,x;,...,a:m)} < ¢,

foralli e {1,...,n} and any x1,...,z,, 2, € X. Let f(S) denote f(X,...,X,,), then, for
all e > 0, the following inequality holds:

5.2
PUAS) - BUO) 2 o) <en{ S

@ Useful concentration inequality for a more complex function than a mean value under the
“bounded difference”.

@ The main concentration inequality for a generalization bound.
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Agnostic PAC Learning Algorithm

Machine Learning, 17, 115-141 (1994)
© 1994 Kiuwer Academic Publishers, Boston. Manufactured in The Netherlands.

Toward Efficient Agnostic Learning

MICHAEL J. KEARNS ‘mkearns @rescarch.ail.com
ROBERT E. SCHAPIRE schapire@research.at.com
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974-0636

LINDA M. SELLIE sellie@research.att.com
Department of Computer Science, University of Chicago, Chicago, IL 60637

Editor: Lisa Hellerstein

Abstract. In this paper we initiate an of i of the Probably i Correct
(PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal
in this direction is informally termed agnostic learning, in which we make virtually no assumptions on the
target function, The name derives from the fact that as designers of leaming algorithms, we give up the belief
that Nature (as reproseated by the target function) has a simple o succinct explanation. We give a number
of positive and negative results that provide an initial outline of the possibilities for agnostic leaming. Our
sesults include hardness results for the most obvious generalization of the PAC model o an agnostic setting,
an efficient and general agnostic learning method based on dynamic programming, relationships between loss
functians for agnostic learning, and an algorithm for a learning problem that involves hidden variables

Keywords: machine leaming, agnostic leaming, PAC learning, computational lcaming theory

@ For the smooth transition from PAC learning, | will introduce agnostic PAC learning.
@ Later, we will mainly use languages from statistical learning theory.
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Agnostic PAC Learning Algorithm

Definition (simplified definition)

An algorithm A is an agnostic PAC-learning algorithm for # if for any € > 0, § > 0, A*<H,
and D separable-by-h*, and for some minimum sample size n’ (which depends on ¢, 4, D), the
following holds with any sample size n > n':

P {L(A(S)) — zléi%[lL(h) < 5} >1-4,

where S := ((z1,91), .., (Tn,yn)) ~ D"
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An algorithm A is an agnostic PAC-learning algorithm for # if for any € > 0, § > 0, A*<H,
and D separable-by-h*, and for some minimum sample size n’ (which depends on ¢, 4, D), the
following holds with any sample size n > n':

P {L(A(S)) — 21?71_[1[/(}1) < 5} >1-4,

mn

where S := ((z1,91), .., (Tn,yn)) ~ D"

e argminpey L(h): the best hypothesis
@ Vapnik notations on generalization bounds are more widely used.
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Agnostic PAC Learning Algorithm

Definition (simplified definition)

An algorithm A is an agnostic PAC-learning algorithm for # if for any € > 0, § > 0, A*<H,
and D separable-by-h*, and for some minimum sample size n’ (which depends on ¢, 4, D), the
following holds with any sample size n > n':

P {L(A(S)) — 21?71_[1[/(}1) < 5} >1-4,

mn

where S := ((z1,91), .., (Tn,yn)) ~ D"

e argminpey L(h): the best hypothesis
@ Vapnik notations on generalization bounds are more widely used.

@ Please check out the original agnostic PAC learning definition.
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Definitions

Definition (best hypothesis)

n = in L(h
arg min L(h)

Definition (empirical risk minimizer)

= in L(h
h Sl i (h)
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Goal: Find Generalization Bounds

Definition (generalization error — an interesting quantity)

L(h) — L(h)
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Goal: Find Generalization Bounds

Definition (generalization error — an interesting quantity)

L(h) - L(h)
o Why?
» Generally the bound of the following is called a “generalization bound":
L(h) — L(h")

» It is bounded as follows (will see later):
P {L(ﬁ) —L(n) > a} <P {sup L(h) — ﬁ(h)‘ > 5}
heH 2

» We also call a bound of L(h) — L(h) a generalization bound — The term “generalization
bound” is used in multiple ways.

» I'll introduce the philosophy on “From Theory to Algorithm”, where L(h) — ﬁ(h) is more
directly related.

@ The generalization bound will depend on the complexity of H, which is harder to measure
if H is an infinite set (than the finite case).
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Example: A Learning Bound for a Finite Hypothesis Set |

Setup:

@ H: a finite set of functions mapping from X to )
@ D: any distribution — no assumption!

o S: labeled examples

e A: any algorithm — no assumption to use!
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Example: A Learning Bound for a Finite Hypothesis Set |l

Theorem

Let ¢(-) € [0,1]. For anye >0, 6 >0, and D, we have

with probability at least 1 — §.

@ We have logarithmic dependence on |#| and 1 /6 — this bound is not “sensitive” to them.
@ This is a uniform convergence bound: “Vh" is inside of the probability.

(X) VYhewH, P{L(h)<ﬁ(h)+\/hl|%|2:hl§} >1-6

» We need this as we don't know which hypothesis will be used.

o Conservative (=data-independent): even though some h is “bad”, we need the
convergence guarantee.
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Example: A Learning Bound for a Finite Hypothesis Set 1|

Proof Sketch:

< |H|exp {—2n52}
@ (1): Uniform convergence via the union bound
@ (2): A “point” convergence via the Hoeffding's inequality
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From the Previous Learning Bound to an Algorithm

Learning bound

This bound holds for any h, including A(S) for any A.

If A minimizes the upper bound, it minimizes the expected error.

One such algorithm is the empirical risk minimizer (ERM)!

For this distribution-free setup, the sample complexity is not very meaningful.

Algorithm

Given H and labeled examples S,
min L(h)
heH
@ Note that our algorithm can be more general, e.g., a regularized ERM.
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ERM is Agnostic-PAC

Example: Under Finite Hypotheses

Why?

L(AS)) = L") = { LIAGS)) = LIAWS)) | + { L(AWS) = L) | + { L(w) - L) }

<{LeAs) - Lias) )+ iL<h*> L)}

uniform convergence concentration inequality

1 1
- 2n 2n

with probability at least 1 — (01 + d2).
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Separable D v.s. D

A bound under the separability assumption

L(A(S)) <

S|

1
(10g|7-t! + log S)

A bound without separability

@ This is not an apple-to-apple comparison, but let's try to compare.

24 /46



Separable D v.s. D

A bound under the separability assumption

L(A(S)) <

S|

1
(log|’Hl + log 5)

A bound without separability

@ This is not an apple-to-apple comparison, but let's try to compare.

@ A bound that exploits more information is tighter.
» A distribution is separable (= no noise).
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Separable D v.s. D

A bound under the separability assumption

L(A(S)) < (1og|%r +log§)

S|

A bound without separability

@ This is not an apple-to-apple comparison, but let's try to compare.
@ A bound that exploits more information is tighter.

» A distribution is separable (= no noise).

@ Under the additional information, we can learn faster (i.e., % VS

S

2446



A More General Bound

o In general, H is infinite (e.g., a set of neural networks)
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A More General Bound

@ In general, H is infinite (e.g., a set of neural networks)
@ The related bound is one of the key results of statistical learning theory (via Vapnik)

@ Related keywords include

» McDiarmid’s Inequality
Rademacher Complexity
VC dimension
A learning bound for SVM
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A More General Bound

In general, H is infinite (e.g., a set of neural networks)

The related bound is one of the key results of statistical learning theory (via Vapnik)

Related keywords include

» McDiarmid’s Inequality
Rademacher Complexity
VC dimension

A learning bound for SVM

Caution: this “data-independent” bound cannot not explain the learnability of deep
networks!

v vy
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Rademacher Complexity

A way to measure the complexity of H (when H is infinite)!
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Rademacher Complexity

A way to measure the complexity of H (when H is infinite)!
Definition

Let F be a set of real-valued functions f: Z — R (e.g., Z := X x })). The Rademacher

complexity of F is
1 n
R, (F)=FE<sup— > o,f(Z),
(F) {fefn; (

where Z1,...,Z, are drawn i.i.d. from a distribution and o1,...,0, are drawn i.i.d. from the
uniform distribution over {—1,+1} (a.k.a. Rademacher variables).
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Rademacher Complexity

A way to measure the complexity of H (when H is infinite)!
Definition
Let F be a set of real-valued functions f: Z — R (e.g., Z := X x })). The Rademacher
complexity of F is
1 n
R, (F)=FE<sup— > o,f(Z),
n(F) {fefn; if (Z

where Z1,...,Z, are drawn i.i.d. from a distribution and o1,...,0, are drawn i.i.d. from the
uniform distribution over {—1,+1} (a.k.a. Rademacher variables).

@ Previously, “concentration inequalities” + “union bound” provides a generalization bound.

@ This term will be upper-bounded by a term with “VC dimension” (will not cover).
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Rademacher Complexity: Interpretation

@ This term considers an “imaginary binary classification” problem with randomly labeled
examples (Z;,0;).
> If o; = sign(f(Z;)), f is correct on (Z;, 0;).
» Solving sup = finding a “best” binary classifier.
» Fix n and F — draw Z; and o; — find f.
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Rademacher Complexity: Interpretation

@ This term considers an “imaginary binary classification” problem with randomly labeled
examples (Z;,0;).
> If o; = sign(f(Z;)), f is correct on (Z;, 0;).
» Solving sup = finding a “best” binary classifier.
» Fix n and F — draw Z; and o; — find f.
e R, (F) captures how well the “best classifier” from F can align with random labels.
» Large R, (F) means that there is some f € F, “flexible” enough to learn randomly labeled
examples.
» e.g., linear functions v.s. neural networks
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Generalization Bound via Rademacher Complexity

Theorem

Let F:={z— £(z,h) | h € H} and £(-) € [0,1]. For all h € H,

L(h) < L(h) + 2R, (F) + \/%

with probability at least 1 — §.

e f € F is a composition of h and ¢.
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Proof Sketch: A Bird’s-eye View

@ Define a random variable G,
» G, =sup,cy L(h) — L(h)
» A maximum difference between the expected and empirical error (i.e., the worse case = sup).
» The bound of this term is a generalization bound.
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Proof Sketch: A Bird’s-eye View

@ Define a random variable G,
» G, =sup,cy L(h) — L(h)
» A maximum difference between the expected and empirical error (i.e., the worse case = sup).
» The bound of this term is a generalization bound.

@ Show that G,, concentrates to E{G,,}.
» We will use the McDiarmid's concentration inequality.

© Use a technique called “symmetrization” to bound E{G),} using the Rademacher
complexity.
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Proof Sketch

1. Setup

Define an interesting quantity to us!

o Consider the maximum difference between L(h) and L(h).

G = sup L(h) — L(h)
heH

» G, is a random variable that depends on Z1,...,Z,.
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Proof Sketch

1. Setup

Define an interesting quantity to us!

o Consider the maximum difference between L(h) and L(h).

G = sup L(h) — L(h)
heH

» G, is a random variable that depends on Z1,...,Z,.

@ We will consider the following tail bound:

P{G, >¢}.
» What should we do?
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Proof Sketch |

2. Concentration

Derive a tail bound via a concentration inequality!
@ Let g be the deterministic function such that G,, = g(Z1,...,Z,).
@ Then, the following holds:

1
9(Z1,.. Ziy oo Zn) — (20 2 Z)| < -~
o Why?

> Recall L(h) = 13" 0(Z;, h)

» Recall £(-) € [0, 1].

» We have
sup [£(0) ~ L] - sup |20 = £+ (620.1) ~ 6200 | < 7.
heH heH n n

9(Z,..., Ziyeuny Zn) 9(Z, z! Zn)
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Proof Sketch Il

2. Concentration

@ Apply the McDiarmid’s concentration inequality:

P{G, > E{G,} +¢'} < exp (—2ne?).

> g is a non-trivial function, including sup over h € H; thus, we cannot use the usual
concentration inequality (e.g., the Hoeffding's inequality).

But, we can still use the McDiarmid's inequality due to the bounded difference.
We can find our generalization bound if we can bound E{G,,}. But how?

Note that E{G,} is related to the complexity of F (will see soon).

v

v

v
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Proof Sketch |

3. Symmetrization

Bound E{G,} (to find a bound for G,,)
e [E{G,} is not easy to analyze as it depends on L(h), an expectation of an unknown
distribution D — expectation includes expectation.
@ We will replace this to depend on D only through samples Z1,..., Z,.
@ The key idea of “symmetrization” is to introduce “ghost” samples Z],...,Z/, drawn
i.i.d. from D to rewrite E{G,}.

> Let L'(h) = 2 S0 £(Z,h).
» Rewrite L(h) in terms of the ghost samples, i.e.,

E{G,} =E {2’25 L(h) — ﬁ(h)} iE {sup L'(h) — ﬁ(h)}
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Proof Sketch Il

3. Symmetrization

e Simplify and bound this rewritten E{G),}:

B2(Gn} = B {sup L) - £} = B2 fsup B2 AL M) - L0}

_Es {Sup Bz {L'(h) - ﬁ(h)}}

heH
et o g0}
=FEzz {225 L'(h) — E(h)}
—Es 2 {225 % Zn; (7 h) — 07, h))}

where Z .= {Z1,...,Zy,} and 2" :={Z],..., Z] }.
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Proof Sketch IlI

3. Symmetrization
@ Remove the dependence on the ghost samples.

» Introduce the i.i.d. Rademacher variables o1, ..., 0,, where o; is uniform over {—1,1}.
» Observe that ¢(Z], h) — £(Z;, h) is symmetric around 0.
» Thus, we have

E{G,} <E

1 « )
Zlel;% E Z: (E(Zi, h) - K(Zi, h))}

{
{Sup Zaz (Z“h))}
|

heH T

sup — Za, h) + sup — Z —0;) Zl,h}

heH T heH T

=2E[< su ol(Zi,h) p = 2R, (F
S
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Proof Sketch
4. Combine

@ From concentration, we have
P {Gn > E{G,} + 6’} < exp (—2n5'2) )
@ From symmetrization, we have

E{G,} <2R,(F).
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Proof Sketch
4. Combine

@ From concentration, we have
P {Gn > E{G,} + 5’} < exp (—2n5'2) )
@ From symmetrization, we have
E{G,} <2R,(F).
@ Our goal is to bound the following tail probability:
P{G, > e} < exp <—2n (e — E{Gn})2>

< exp (~2n (e — 2RA(F))°)
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Proof Sketch
4. Combine

@ From concentration, we have
P {Gn > E{Gy} +€'} <exp(—2ne?).
@ From symmetrization, we have
E{G,} <2R,(F).
@ Our goal is to bound the following tail probability:
P{G, > e} < exp <—2n (e — E{Gn})2>
< exp (—2n (e - 2Rn(f))2)

@ This shows the claim, as

5:exp(—2n(£—2Rn(]:))2) = e=2R,(F)+
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Connection to the VC Generalization Bound

Ru(F) < \/2VC(7—[)(Inn+ 1)

n

e VC(H): VC dimension of H
@ Related concepts:

» Empirical Rademacher Complexity
» A shattering coefficient or growth function
» Sauer’s lemma
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Application: Support Vector Machine (SVM)
Setup:
e X € R% example space
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Setup:
o X € R% example space
e )Y :={—1,1}: binary label space
@ H: a set of linear functions (without a bias term for simplicity), i.e.,

H::{xww-x\wGRd; Jw][2 < 1}

or equivalently H = {w € R¢ | w2 < 1}.
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Application: Support Vector Machine (SVM)
Setup:

o X € R% example space

e )Y :={—1,1}: binary label space

@ H: a set of linear functions (without a bias term for simplicity), i.e.,

H::{xww-x\wGRd; Jw][2 < 1}

or equivalently H = {w € R? | ||w]||2 < 1}.

@ (: margin loss
{4 (v) = min {1,max {0, 1- U}} ,
8

o L./L,: the expected/empirical margin loss

Ly(w) = E{l,(y(w-x))} and L Zz yi(w - x;))
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A Generalization Bound of Large-margin Classifiers

Theorem
For allw € H and v > 0,

with probability at least 1 — §.

@ As ~y gets larger, the first term gets larger but the second term gets smaller.
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Proof Sketch |

@ Recall

n

60 =i {Lmax {01 - 2 H L) =BG o)), and By w) = 1 6 sl a)

1=1

@ Our generalization bound via the Rademacher complexity:

L(h) < L(h) + 2R, (F) + \/125

@ As (o1 </, for any w € H, we have

L(w) < Ly (w)
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Proof Sketch Il

@ Thus, we have

» (1) the generalization bound via Rademacher complexity.
> (2) the Talagrand's lemma (check out our references!)

~»
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From Theory to Algorithm |
From the Large-margin Bound to the SVM Algorithm

Theory:

Algorithm:

1
Hgn gzéhinge(yi(w xl)) +>‘HwH2

=1

We will see only a high-level connection (see our references for details).

42 /46



From Theory to Algorithm Il

From the Large-margin Bound to the SVM Algorithm

Connection?
@ margin loss £, (v) and hinge loss fhinge(v):

{+(v) = min {1, max {O, 1- :/}} and  lhinge(v) == max(0,1 — v)

e the upper bound of Z,(v):
Ly(y(w - z)) = min {1,max {O, 1- @}}
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From Theory to Algorithm IlI

From the Large-margin Bound to the SVM Algorithm

e The Rademacher complexity is (roughly) bounded as follows:

o)

@ An algorithm that minimizes the upper bound (given a hyper-parameter 7):

min lhinge i\ — Ty
wilwl2<t nz e (y (7 ))

@ The change of a variable:

~
—_

w /
w=— = |[u<—
~

2
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From Theory to Algorithm IV

From the Large-margin Bound to the SVM Algorithm

e SVM algorithm:

Zghlnge yz w xz)) — min Zehmge Yi (w xz))'i_AHw ”2

w': ||w’||2< : w'eRd N

» Why? Check your convex optimization book.

@ This algorithm minimizes the expected error (as we directly minimize the upper bound of
the expected error).
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Conclusion

© We have explored generalization bounds via uniform convergence under various setups.
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Conclusion

© We have explored generalization bounds via uniform convergence under various setups.

> H: finite
» 7H: infinite — Rademacher complexity
» (: 0-1 loss

» ¢: margin loss

@ What are potential limitations of statistical learning theory?
» the i.i.d. assumption!

© In online learning, we will learn a learning algorithm without the i.i.d. assumption.
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