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What is Learning Theory?

Theory on exploring conditions (or assumptions) when machines can learn from data.

https://www.valamis.com/hub/learning-curve

Statistical learning theory

Online learning theory
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Historical Figure: Vladimir Vapnik

“The Nature of Statistical Learning Theory”: summary of his papers up to 1995.

VC dimension, SVM, ...
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Historical Figure: Leslie Valiant

“PAC Learning Theory” in 1984

Turing Award winner in 2010
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Four Key Ingredients of Learning Theory

The simplified objective of statistical learning theory:

find f

subj. to f ∈ F
E(x,y)∼D ℓ (x, y, f) ≤ ε

or

min
f∈F

E
(x,y)∼D

ℓ (x, y, f)

Ingredient 1: A distribution D (e.g., a distribution over labeled images)

Ingredient 2: Hypothesis space F (e.g., linear functions, a set of resnet)

Ingredient 3: A loss function ℓ (e.g., 0-1 loss, L1 loss, cross-entropy loss)

Ingredient 4: A learning algorithm (e.g., GD)
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Main Goal: Finding Conditions for Learnability
An Example

Conditions:

D: linearly separable dog and cat image distribution

F : linear functions – encode prior of a data distribution

ℓ: 0-1 loss for classification – represent task

a learning algorithm: a gradient descent (GD) algorithm

Checking Learnability:
If we prove that the GD algorithm can find the true linear function with a “desired level” of
loss, we say F is learnable. In this case, we say the GD algorithm is a “good” algorithm.
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Why PAC Learning?

The key questions in machine learning:

When can we learn?

How many samples do we need to have a good model?

The PAC framework provides partial answers to these key questions.
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Recall Four Key Ingredients of Learning Theory

Distribution – setup / assumption
▶ image distribution, language distribution
▶ samples are independently drawn from the same distribution

Loss – a goodness metric for a desired task
▶ classification: 0-1 loss
▶ regression: L1 loss

Hypothesis space – prior on the distribution, what we will design!
▶ convolution network: good for image classification
▶ transformers: good for language modeling

A learning algorithm – what we will design!
▶ gradient descent (GD) method...
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Assumption on Distributions

Assumption

We assume that labeled examples are independently drawn from the same (and unknown)
distribution D over labeled examples X × Y.

“independent”: not sequential data

“unknown”: yes, we don’t know the true distribution

“same”: key for success

A.K.A. the i.i.d. assumption

The i.i.d. assumption is the standard setup.

It is easily broken due to distribution shift.

Online learning relaxes this assumption (under some conditions).
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A Goodness Metric: Expected Error for Classification

Definition (expected error)

Given a hypothesis h ∈ H and an underlying distribution D, the expected error is defined by

L(h) := P {h(x) ̸= y} = E {1 (h(x) ̸= y)} ,

where the probability is taken over (x, y) ∼ D and 1 is the indicator function.

Suppose the classification task. But, we can use any task-dependent loss.

This expected error of h is sometimes called the risk of h or the generalization error of h.

The indicator function is defined as follows:

1 (s) :=

{
1 if s is true

0 if s is false
.
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A Goodness Metric: Empirical Error

Definition (empirical error)

Given a hypothesis h ∈ H and labeled samples S := ((x1, y1), · · · , (xn, yn)), the empirical
error is defined by

L̂(h) :=
1

n

n∑
i=1

1 (h(xi) ̸= yi) ,

where 1 is the indicator function.

This empirical error of h is sometimes called the empirical risk of h.
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One More Assumption

Assumption

We assume that a distribution D is separable by some hypothesis h∗ ∈ H, i.e.,

L(h∗) = 0.

Equivalently, we can consider a true hypothesis h∗ from which a label y = h∗(x) is
generated; in this case, a distribution is only defined over X .

This assumption is strong but useful in some cases (e.g., PAC conformal prediction).

This assumption will be removed later (in a more general learning framework).
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Approximately Correct
A Goodness Metric for Algorithms

Definition

Given ε > 0, we say that h is approximately correct if

L(h) ≤ ε.

ε is a user-defined parameter.

Recall that L is an expected error.

We want to find h that achieves a desired error level ε.

h is learned from data; thus, h is also a random variable.
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Probably Approximately Correct (PAC)
A Goodness Metric for Algorithms

Definition

Given ε > 0, δ > 0, and n ∈ N, we say that an algorithm A is probably approximately correct
(PAC) if

P {L(A(S)) ≤ ε} ≥ 1− δ,

where A : (X × Y)∗ → H and the probability is taken over S := ((x1, y1), . . . , (xn, yn)) ∼ Dn.

S∗ :=
⋃∞

i=0 S
i

S ∼ Dn: i.i.d. samples

A: a learning algorithm

PAC is a property of an algorithm

15 / 21



PAC Learning Algorithm

Definition (simplified definition)

An algorithm A is a PAC-learning algorithm for H if for any ε > 0, δ > 0, h∗ ∈ H, and D
separable by h∗, and for some minimum sample size n∗ (which depends on ε, δ,D), the
following holds with any sample size n ≥ n∗:

P {L(A(S)) ≤ ε} ≥ 1− δ,

where S := ((x1, y1), . . . , (xn, yn)) ∼ Dn.

Please check out the original PAC learning definition.

The algorithm should satisfy the PAC guarantee for any D and h∗.

If D is “complex” (thus h∗ is complex), we need more samples.

If ε (or δ) is small, we need more samples.
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Example: A Learning Bound for a Finite Hypothesis Set I

Learning Setup:

H: a finite set of functions mapping from X to Y
▶ e.g., a set of experts

D: a distribution is separable by h∗ ∈ H
S: labeled examples

A: an algorithm that satisfies L̂(A(S)) = 0
▶ i.e., A returns a “consistent” hypothesis.
▶ Here, the algorithm exploits the fact on the separability!
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Example: A Learning Bound for a Finite Hypothesis Set II
Theorem

For any ε > 0, δ > 0, h∗ ∈ H, and D separable by h∗, we have

L(A(S)) ≤ 1

m

(
log |H|+ log

1

δ

)
with probability at least 1− δ.

A is a PAC learning algorithm.

Sample complexity?

m ≥ 1

ε

(
log |H|+ log

1

δ

)
▶ See? As H gets complex and as ε and δ are smaller, we need more samples.

key: A union bound over the events of each hypothesis.
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Example: A Learning Bound for a Finite Hypothesis Set III

Lemma (a union bound)

Let A1, . . . , AK be K different events (which might not be independent). Then,

P

{
K⋃
k=1

Ak

}
≤

K∑
k=1

P {Ak} .

Recall the definition of a measure.
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Example: A Learning Bound for a Finite Hypothesis Set IV
Proof Sketch:
Let Hε := {h ∈ H | L(h) > ε}. Then, we have

P {L(A(S)) > ε} ≤ P

{
∃h ∈ Hε, L̂(h) = 0

}
(1)

= P

{ ∨
h∈Hε

L̂(h) = 0

}

≤
∑

h∈Hε

P

{
L̂(h) = 0

}
(2)

≤
∑

h∈Hε

(1− ε)m (3)

≤ |H|(1− ε)m.

(1): we may want a (stronger) “uniform convergence” but data-agnostic bound

(2): union bound due to the finite hypotheses

(3): a special case of the “point” binomial tail bound due to the i.i.d. assumption, 1{h(x) ̸= y} is a
Bernoulli random variable with a parameter of ε, and mL̂(h) is the sum of m Bernoulli random variables.
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Next

Relax assumptions:

What if we have an infinite hypothesis set?

What if D is not separable?

We will explore a more general learning bound.
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