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What is Learning Theory?

Theory on exploring conditions (or assumptions) when machines can learn from data.
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@ Statistical learning theory
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Historical Figure: Vladimir Vapnik

@ "“The Nature of Statistical Learning Theory”: summary of his papers up to 1995.

e VC dimension, SVM, ...

vapnik

Professor of Columbia, Fellow of NEC Labs Ameri
Verified email at nec-labs.com

machine leaming  statistics ~ computer science

TITLE

The Nature of Statistical Learning Theory
V Vapnik
Data mining and knowledge discovery

Support-vector networks
C Cortes, V Vapnik
Machine leaming 20, 273-297

Atraining algorithm for optimal margin classifiers
BE Boser, IM Guyon, VN Vapnik
Proceedings of the fith annual workshop on Computational leaning theory

applied to Zip code
¥ LeCun, B Boser, JS Denker, D Henderson, RE Howard, W Hubbard,
Neural computation 1 (4), 541-551

Gene selection for cancer classfication using support vector machines
1 Guyon, J Weston, S Bamhill, V Vapnik
Machine learning 46, 389-422

Support vector regression machines
H Drucker, CJ Burges, L Kaufman, A Smola, V Vapnik
Advances in neural information processing systems
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Historical Figure: Leslie Valiant

Leslie Valiant

Unknown affiliation
No verified email

TITLE CITED BY YEAR

Atheory of the leamable 7939 1984
LG Valiant
Communications of the ACM 27 (11), 1134-1142

Abridging model for parallel computation 5390 1990
LG Valiant
‘Communications of the ACM 33 (8), 103-111

The complexity of computing the permanent 3413 1979
LG Valiant
Theoretical computer science 8 (2), 189-201

The complexity of enumeration and reliability problems 2579 1979
LG Valiant
siam Journal on Computing 8 (3), 410-421

Cryptographic limitations on leaming boolean formulae and finite automata 1318 1904
M Kearns, L Valiant
Journal of the ACM (JACM) 41 (1), 67-95

/ Random generation of combinatorial structures from a uniform distribution 1218 1986
o ”,u/”' MR Jerrum, LG Valiant, VV Vazirani

//% /L‘[ i Theoretical computer science 43, 169-188

et

@ "“PAC Learning Theory” in 1934
@ Turing Award winner in 2010

4/21



Four Key Ingredients of Learning Theory
The simplified objective of statistical learning theory:
find f
subj. to feF
E(w,y)ND ¢ ('T’ Y, f) <e

or
min E {(z,y,
mn B (2,9, [)
o Ingredient 1: A distribution D (e.g., a distribution over labeled images)
e Ingredient 2: Hypothesis space F (e.g., linear functions, a set of resnet)
o Ingredient 3: A loss function ¢ (e.g., 0-1 loss, L1 loss, cross-entropy loss)
e Ingredient 4: A learning algorithm (e.g., GD)
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Main Goal: Finding Conditions for Learnability
An Example

Conditions:
@ D: linearly separable dog and cat image distribution
@ F: linear functions — encode prior of a data distribution
@ /: 0-1 loss for classification — represent task

@ a learning algorithm: a gradient descent (GD) algorithm

Checking Learnability:
If we prove that the GD algorithm can find the true linear function with a “desired level” of
loss, we say F is learnable. In this case, we say the GD algorithm is a “good” algorithm.
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Contents from

CS229T/STAT23L: Statistical Learning Theory (Winter 2016)

Perey Linng

Last updated Wed Apr 20 2016 0136
describes the basic notation, definitions, and theorems.

Contents

1 Ouersiew
Wit i s couse s (Lt 1
12 Aemprois (Lesture 1)

13 Uniform convergence (Lecture 1)

14 Kernel methods (Lecture 1)

15 Online learning (Lecture 1)

2 Asymptotics
21 Overview (Lecture 1)
22 Guussian mean estimation (Lecture 1)
23 Multinomi estimation (Lecture 1)
24 Exponential fumilies (Lociure 2)
25 Maximum enteopy principle (Lecture 3
26 Method of moments for latent variable model (Lecture 3)
27 Fixed design linear regression (Lecture 3)
28 General lows functions and random design (Lecture 1)
29, Regilivel i A s sgsesion (Lt )
210 Summay (Lt )
211 References

form convergence

Overvew (Lctue )

2 Formal secup (Lectus

33 Reslnable e pothess s (Lotine 5
Generalization hounds via uniform convergence (Tecture 5)

55 Goneetrsion nequltion (st 3

36 Finite hypothesin cluses (Lecturo 6)

57 Concentraton mequalites (conimed) (Lot}

38 Rademacher complexity (Lecture 6)

39 Finite hypothesis classes (Lecture 7) .
310 Shattering coefficient (Lecture 7)

hese lecture notes will be updated periodically as the course goes on. The Appendix

Foundations of
Machine Learning condeision

Mehryar Mobhri,
Afshin Rostamizadeh,
and Ameet Talwalkar

and various papers.
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Why PAC Learning?

The key questions in machine learning:
@ When can we learn?

@ How many samples do we need to have a good model?

The PAC framework provides partial answers to these key questions.
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Recall Four Key Ingredients of Learning Theory

e Distribution — setup / assumption

» image distribution, language distribution

» samples are independently drawn from the same distribution
@ Loss — a goodness metric for a desired task

» classification: 0-1 loss
> regression: L1 loss

Hypothesis space — prior on the distribution, what we will design!

» convolution network: good for image classification
» transformers: good for language modeling

@ A learning algorithm — what we will design!
» gradient descent (GD) method...
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Assumption on Distributions

Assumption

We assume that labeled examples are independently drawn from the same (and unknown)
distribution D over labeled examples X x ).

“independent”: not sequential data

“unknown": yes, we don’t know the true distribution
“same”: key for success

A.K.A. the i.i.d. assumption

The i.i.d. assumption is the standard setup.

It is easily broken due to distribution shift.

® 6 6 6 o o o

Online learning relaxes this assumption (under some conditions).
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A Goodness Metric: Expected Error for Classification

Definition (expected error)

Given a hypothesis h € H and an underlying distribution D, the expected error is defined by
L(h) =P {h(z) # y} = E{1 (h(z) # )},
where the probability is taken over (x,y) ~ D and 1 is the indicator function.

@ Suppose the classification task. But, we can use any task-dependent loss.
@ This expected error of h is sometimes called the risk of h or the generalization error of h.

@ The indicator function is defined as follows:

1 (s) = {1 if sis true

0 if sis false
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A Goodness Metric: Empirical Error

Definition (empirical error)
Given a hypothesis h € H and labeled samples S := ((1,91), - , (Zn,yn)), the empirical
error is defined by

Z]l xz %yz,

where 1 is the indicator function.

@ This empirical error of h is sometimes called the empirical risk of h.
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One More Assumption

Assumption
We assume that a distribution D is separable by some hypothesis h* € H, i.e.,

L(h*) = 0.

e Equivalently, we can consider a true hypothesis h* from which a label y = h*(x) is
generated; in this case, a distribution is only defined over X.

@ This assumption is strong but useful in some cases (e.g., PAC conformal prediction).

@ This assumption will be removed later (in a more general learning framework).

13/21



Approximately Correct
A Goodness Metric for Algorithms

Definition
Given € > 0, we say that & is approximately correct if

L(h) <e.

@ ¢ is a user-defined parameter.
@ Recall that L is an expected error.
@ We want to find h that achieves a desired error level ¢.

@ h is learned from data; thus, A is also a random variable.
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Probably Approximately Correct (PAC)

A Goodness Metric for Algorithms

Definition
Given € > 0, § > 0, and n € N, we say that an algorithm A is probably approximately correct
(PAC) if

P {L(A(S)) <e} =1-4,
where A : (X x ))* — H and the probability is taken over S = ((x1,v1), ..., (Tn,yn)) ~ D™.

o S* =2, 5"
@ S~ D" iid. samples
e A: a learning algorithm

e PAC is a property of an algorithm
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PAC Learning Algorithm

Definition (simplified definition)

An algorithm A is a PAC-learning algorithm for 7 if for any € > 0, § > 0, h* € H, and D
separable by h*, and for some minimum sample size n* (which depends on ¢, §, D), the
following holds with any sample size n > n*:

P{L(A(S)) <e}>1-4,
where S := ((z1,91), -, (Tn,yn)) ~ D".

Please check out the original PAC learning definition.
The algorithm should satisfy the PAC guarantee for any D and h*.

If Dis “complex” (thus h* is complex), we need more samples.

If € (or §) is small, we need more samples.
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Example: A Learning Bound for a Finite Hypothesis Set |

Learning Setup:
@ H: a finite set of functions mapping from X to )
> e.g., a set of experts
@ D: a distribution is separable by h* € H
o S: labeled examples
o A: an algorithm that satisfies L(A(S)) =0

» ie., A returns a “consistent” hypothesis.
» Here, the algorithm exploits the fact on the separability!
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Example: A Learning Bound for a Finite Hypothesis Set Il

Theorem

Foranye >0, 0 >0, h* € H, and D separable by h*, we have
LIAS)) < L (log [H] + log -
= 2 g 5
with probability at least 1 — .

o A is a PAC learning algorithm.

@ Sample complexity?

1

m > - <log|’H\ + log

1
0
> See? As H gets complex and as € and § are smaller, we need more samples.

@ key: A union bound over the events of each hypothesis.
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Example: A Learning Bound for a Finite Hypothesis Set 1|

Lemma (a union bound)
Let Ay,..., Ak be K different events (which might not be independent). Then,

K K
]P{UAk} <> P {4}
k=1

k=1

@ Recall the definition of a measure.
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Example: A Learning Bound for a Finite Hypothesis Set IV

Proof Sketch:
Let H. :={h € H | L(h) > €}. Then, we have

P {L(AS)) >} <P {Hh € He, L(h) = o}

heH.
<y =9m
heH,
< H|(1—2)™
@ (1): we may want a (stronger) “uniform convergence” but data-agnostic bound
@ (2): union bound due to the finite hypotheses

@ (3): a special case of the “point” binomial tail bound due to the i.i.d. assumption, 1{h(z) # y} is a

(1)

Bernoulli random variable with a parameter of ¢, and mﬁ(h) is the sum of m Bernoulli random variables.
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Next

Relax assumptions:
@ What if we have an infinite hypothesis set?
@ What if D is not separable?

We will explore a more general learning bound.
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