Trustworthy Machine Learning
Online Learning

Sangdon Park

POSTECH

1/28

Contents from

(CS229T/STAT231: Statistical Learning Theory (Winter 2016) Foundations Of
- Machine Learning coneion

Last updated Wed Apr 20 2016 01:36

These lecture notes ill be updated periodically s the conrse goes on. The Appendix
describes the basic notation, definitions, and theorems.

Contents

1 Ove: 1
11 Wit st conre sbont? (Lecturs 1) 1
12 Asymptoties (Lecture | 5
13 Uniform convergence (Lecture 1) e S 6
14 Kernel methods (Lecture 1) 8
L5 Online learning (Lecture 1) 9

2 Asymptotics 10
21" Overview (Lecture 1) . B
22 Gaussian mean estimation (Lecture 1) 1
23 Multinomial estimation (Lecture 1) 1
24 Exponential families (Lecture 2) 1
25 Maximum entropy principle (Lecture 2) 19
36 Mthod of momert o ort- oo modils (Lestare 3 . 2
27 Fixed devign linear regeession (Lecture 3)
25 Coners los amtine o andom Aot (Locine 1] 5
29 Rogularized fixed design linoar regression (ecture 4) o
210 Summary (Lecture 1) M
211 References . . . k3

3 Uniform convergence a5
Overview (Lecture 5) a
32 Formal setup (Lecture 5) - a
33 Realizable fnite bypothesis clases (Lecture 5) . . 50
34 Generalization bounds via uniform convergence (Lecture 5) 5
35 Concentration inequalitics (Lecture 5) 56
62
i
es
]
™

36 Finite hypothesis classes (Locture 6)
87 Concetrton raquelito (etinud) (Lt)
38 Rademacher complexity (Lecture 6)

39 Finite hypothesis clsses (Locture 7) Mehryar Mohri,
3.10 Shattering coeffcient (Lecture 7) . Afshin Rostamizadeh,
1 and Ameet Talwalkar

and various papers.
2/28

Motivation

@ We have considered statistical learning (i.e., learning under the i.i.d. assumption)

3/28

Motivation

@ We have considered statistical learning (i.e., learning under the i.i.d. assumption)

@ However, this assumption can be broken, e.g., distribution shift, price data

3/28

Motivation

@ We have considered statistical learning (i.e., learning under the i.i.d. assumption)

@ However, this assumption can be broken, e.g., distribution shift, price data
@ Here, we will weaken this assumption.

» batch to online: “how data arrives”
» statistical to adversarial: “how data are generated”

3/28

Setup

@ Prediction task: learn to map an example x € A to a label y € Y

4/28

Setup

@ Prediction task: learn to map an example x € X to a label y € Y

@ Online learning game between a learner and nature

Learner

Z1
P1
N

pr
yr

Nature

Protocol:

fort=1,...,7T do
Learner receives an example x; € X
Learner outputs a prediction p; € Y
Learner receives a true label y; € Y
Learner suffers loss £(y;, pt)
Learner update model parameters

end for

4/28

Setup

@ Prediction task: learn to map an example x € X to a label y € Y

@ Online learning game between a learner and nature

o Protocol:

_m fort=1,...,7T do

—n Learner receives an example x; € X

Learner Nature Learner outputs a prediction p; € Y
Zr Learner receives a true label y; € Y
pr Learner suffers loss £(y;, pt)
yr Learner update model parameters
end for

@ The learner is a function A that returns the current prediction given the full history, i.e.,

Pt+1 = A(mlstaplzt,ylzhxﬂrl)

4/28

Example: Online Binary Classification for Spam Filtering

Be careful with this message The sender hasn't authenticated this message so Gmail can't verify that it actually came from them.

o examples: X := {0,1}% are boolean feature vectors (presence or absence of a word)
@ labels:) := {+1,—1} are whether a document is spam or not

e zero-one loss: ¢(y;, pt) = 1 (yr # pi) is whether the prediction was incorrect

5/28

Remarks

@ In batch learning, we have a training phase and test phase; but in online learning, they are
interleaved.

6/28

Remarks

@ In batch learning, we have a training phase and test phase; but in online learning, they are
interleaved.
@ The online learning setup allows to use the full history.

» The history grows in time by O(T") and in space by O(T).
» This means that we can use any batch learning algorithm on the history at each time.
» However, online algorithms tend to be lightweight, i.e., the amount of work by an algorithm

should not grow with .

6/28

Remarks

@ In batch learning, we have a training phase and test phase; but in online learning, they are
interleaved.
@ The online learning setup allows to use the full history.
» The history grows in time by O(T") and in space by O(T).
» This means that we can use any batch learning algorithm on the history at each time.
» However, online algorithms tend to be lightweight, i.e., the amount of work by an algorithm
should not grow with .

@ Online learning algorithms have the potential to adapt.
> e.g., we have labels on adversarial examples!

6/28

Remarks

@ In batch learning, we have a training phase and test phase; but in online learning, they are
interleaved.

The online learning setup allows to use the full history.
» The history grows in time by O(T") and in space by O(T).
» This means that we can use any batch learning algorithm on the history at each time.
» However, online algorithms tend to be lightweight, i.e., the amount of work by an algorithm
should not grow with ¢.

Online learning algorithms have the potential to adapt.
> e.g., we have labels on adversarial examples!

e For some applications (e.g., spam filtering), examples are generated by an adversary.

6/28

“Goodness”’ Metric

How to measure the performance of an online learning algorithm?

7/28

“Goodness”’ Metric

How to measure the performance of an online learning algorithm?

@ The cumulative loss of the learner, i.e.,

7/28

“Goodness”’ Metric

How to measure the performance of an online learning algorithm?
@ The cumulative loss of the learner, i.e.,

T

Zg(ytapt)

t=1

@ No! In the adversarial setting, the adversary can manipulate data to make the learner
trivially bad loss (e.g., Nature can simulate Learner).

7/28

“Goodness”’ Metric

How to measure the performance of an online learning algorithm?

@ The cumulative loss of the learner, i.e.,

T

Zg(ytapt)

t=1

@ No! In the adversarial setting, the adversary can manipulate data to make the learner
trivially bad loss (e.g., Nature can simulate Learner).

@ What do you do when your grade is awful? Compare to the best grade in your class!

7/28

Regret
Definition

T T
Regret := Zf(yt,pt) — }rlréi;{lzg(yt, h(zxt))
t=1 t=1

learner best expert

@ H is a class of experts.
@ The best export is a role model of the learner.

@ We will consider the worst case regret (i.e., labeled examples are generated by an
adversary)

8/28

Negative Result

claim

For any deterministic learner A, there exists an H and the sequence of labeled examples such
that

Regret >

vl N

@ Too bad...

@ Why? Prove under the following setup.
» binary classification, i.e., y € {—1,+1}

» zero-one loss, ie., {(yi,pt) = 1 (pr # yt)
> the learner is fully deterministic.

9/28

Negative Result: Why? Intuition

@ An adversary (who has full knowledge of the learner) can choose y; to make it different to
the learner’s choice py.

@ Thus, the learner's cumulative loss is T'!
o Not yet; how about the best expert’s loss?
o Consider two experts, i.e., H = {h_1,hi1} (where h, always predict y).
@ Thus, we have
T T
Cye hor (@) + Ly ha () =1 =Yy hoa(e)) + Y 0y haa (@) =T
t=1 t=1
a T a T
= ;aytahl(ﬁﬂt)) <5 o ;E(yt,hﬂ(zt)) <3
T T T
= Regret = l —mi Ly, h > —.
egre ; (Ye, pr) }g}; (e, hl@e)) = 5
=T S%

10/28

QOutline

e Halving Algorithm
» Deterministic
» Separable assumption
> Finite H
@ Exponential Weighting Algorithm
» Randomized
» No separable assumption
» Finite H
@ Perceptron Algorithm
> Deterministic

» Separable assumption
> Infinite H

11/28

Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert h* € H obtains zero cumulative loss (i.e., {(y:, h*(x¢)) = 0 for all
ted{l,...,T})

12/28

Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert h* € H obtains zero cumulative loss (i.e., {(y:, h*(x¢)) = 0 for all
ted{l,...,T})

@ This impose restrictions on adversaries.

12/28

Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert h* € H obtains zero cumulative loss (i.e., {(y:, h*(x¢)) = 0 for all
ted{l,...,T})

@ This impose restrictions on adversaries.

o We saw a similar assumption in PAC learning.

12/28

Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert h* € H obtains zero cumulative loss (i.e., {(y:, h*(x¢)) = 0 for all
ted{l,...,T})

@ This impose restrictions on adversaries.
o We saw a similar assumption in PAC learning.

@ Practical setup? adaptive conformal prediction

12/28

Halving Algorithm

Algorithm 1 Halving Algorithm

1: Hi+H
2: fort=1,...,T do
3: Observe x;
4: Predict §: = MajorityVote(H:, z:)
5: Observe
6: if gt # Yt then
7: Hit1 < {h € He | h(xe) = ye}
8: else
9: Hiy1 < He
10: end if
11: end for
o V={-1+1}

@ H;: a set of correct experts.

@ Under the separable assumption, keep only correct experts.

@ Due to the separable assumption, we can discard at least half of experts at some
iterations!

13/28

Halving Algorithm: A Regret Bound

Theorem

Under the realizable assumption, for any (¢,)L, we have

Regret < log, |H|.

14/28

Halving Algorithm: A Regret Bound

Theorem

Under the realizable assumption, for any (¢,)L, we have
Regret < log, |H|.

@ Very strong results due to the separable assumption.
» after a finite number of iterations, the predictor never makes mistakes.

14 /28

Halving Algorithm: A Regret Bound

Proof Sketch

@ Let M be the number of mistakes.
@ For each mistake, at least half of the experts are eliminated, i.e., if §; made a mistake,
M| 1 [Hraf o 1
Hi| — 2 IH| oM

Due to the realizable assumption, we have
1 <|Hr41l.

© M = Regret.

15/28

Remove the Separable Assumption

The separable assumption is too strong
Let's remove this.

Then, we need a randomization algorithm.

One example: Exponential weighting algorithm.

16/28

Exponential Weighting Algorithm

Algorithm 2 Exponential Weighting Algorithm
1wy < (L/|H|, ..., 1/|H])
2. fort=1,...,T do

3 Observe

4 Predict §; = h't(x¢), where i; ~ w;

5 Observe y;

6: Update w1 (i) ox we(i) exp {—nl(h'(z¢),ye) } for all i € {1,...[H[}
7. end for

@ H: a set of experts
o (() €[0,1]

17/28

Exponential Weighting Algorithm

Algorithm 3 Exponential Weighting Algorithm
1wy < (L/|H|, ..., 1/|H])
2. fort=1,...,T do

3 Observe

4 Predict §; = h't(x¢), where i; ~ w;

5 Observe y;

6: Update w1 (i) ox we(i) exp {—nl(h'(z¢),ye) } for all i € {1,...[H[}
7. end for

@ H: a set of experts
o (() €[0,1]

@ Due to the randomization in (4), an adversary cannot completely fool the learner.

17/28

Exponential Weighting Algorithm: A Regret Bound

Theorem

For any loss function ¢ with the range of [0, 1], we have

T T
Regret =) Bnp((ye, h(z1)) —min > €y, h(z)) < v/Thn[H]
t=1

t=1
ifn =14/ 781]%'%'.

@ No separable assumption.

“ " - 1 - - -
@ ‘“learnable”, i.e., % = H‘TH‘ with a mild assumption on loss.

@ Still we assume a finite set of experts.

18/28

Exponential Weighting Algorithm |

Proof sketch

Definitions:
o Li:= Zi:l l(hi(zs),ys): the cumulative loss of h; up to ¢
o W= 2@1 exp{—nL}: a “potential value” at time ¢
e Wy = |H|: a “potential value” at time 0

Steps:
@ The lower bound of the “log-potential difference”:
W 1 , 4
In WZ = ln;exp{fnL}} —In|H| > In (ie{{?éﬁm}e)(p{inL%}) —In|H|=-

m
ie{l

,,,,,

19/28

Exponential Weighting Algorithm 1l

Proof sketch

@ The upper bound of the “log-potential difference”:

W, S exp{-nLi} _ S exp{—nl(hi(x:), y1)} exp{—nLi_}

In =1

n - = .
Wi S exp{—nLi_,} S exp{—nLi_,}

. . 2
=In Eit~wt €xXp {—Uz(h“ (mt)7 yt)} < _nEithtg(hlt ('Tt)v yt) + %

T 2
”T i T
= 1In Wo < =N E Eit"'wté(h t"(wt)vyt) + ng

t=1

» For any s € R and a random variable X € [a,b], nEe*¥ < sEX + M.

20/28

Exponential Weighting Algorithm IlI

Proof sketch

© Combine the lower and upper bounds:

T

2
i ' ; n“T
- Ly —In|H| < — E. . 0(ht)+
Ty T nlHl < 77; i, (R (22), 9) + =3

T

i . , nT In|H|

Ei ~w LR (2¢),y:) — min < Ty

tzl 1~ Wt ((t) yt) el T 3 "

21/28

Algorithms So Far

@ Halving Algorithm

» Deterministic
» Separable assumption
» Finite H

22/28

Algorithms So Far

@ Halving Algorithm
> Deterministic
» Separable assumption
» Finite H
@ Exponential Weighting Algorithm
» Randomized

» No separable assumption
» Finite H

22/28

Algorithms So Far

@ Halving Algorithm
> Deterministic
» Separable assumption
» Finite H
@ Exponential Weighting Algorithm
» Randomized

» No separable assumption
» Finite H

@ What's the next?

22/28

Algorithms So Far

@ Halving Algorithm
> Deterministic
» Separable assumption
> Finite H
@ Exponential Weighting Algorithm
» Randomized
» No separable assumption
» Finite H
o What's the next?
» Remove the assumption on the finiteness of 7 (under some assumptions)

22/28

Algorithms So Far

@ Halving Algorithm
> Deterministic
» Separable assumption
> Finite H
@ Exponential Weighting Algorithm
» Randomized
» No separable assumption
» Finite H
o What's the next?
» Remove the assumption on the finiteness of 7 (under some assumptions)
> Deterministic
» Separable assumption (with some margin)
> Infinite H

22/28

Perceptron: History
TLDR: Father of Neural Networks!

weights
inputs

X

activation
functon

X @ net in!put
ne
J
e
@ activation

§ S—

transfer
: : function
X b

threshold
(a) Perceptron (b) Mark | Perceptron machine

@ Invented in 1943 by Warren McCulloch and Walter Pitts.
o Firstly implemented in 1958 by Frank Rosenblatt(!)

23/28

Perceptron Algorithm: Setup

@ D: change over time but require the separable assumption.
@ H: linear functions without bias terms — additional assumption

@ /: 0-1 loss for classification

24 /28

Perceptron Algorithm

Algorithm 4 Perceptron Algorithm
1wy 4w =0
2. fort=1,...,T do
3 Receives an example z; € X
Gt < sign(wy - z¢)
Receives a true label y; € Y
if .@t 7é Yt then
Wiyl <= Wi + Y2t
else
W41 < Wt
10: end if
11: end for

© o N o

25/28

Perceptron Algorithm: A Regret Bound

Theorem

Suppose ||x¢||2 < r for all t and for some r, and there exists v > 0 and v € R? such that for
all t we have

N < yt(v'wt).
[[v]l2
Then, we have

r2

Regret < —.

2

26 /28

Perceptron Algorithm: A Regret Bound

Theorem

Suppose ||x¢||2 < r for all t and for some r, and there exists v > 0 and v € R? such that for
all t we have

ACEED)

S
[[v]l2

Then, we have

)

Regret <

~%o‘ﬁ

@ Assumption: a sequence is separable by a perfect classifier v with some margin

26 /28

Perceptron Algorithm: A Regret Bound

Theorem

Suppose ||x¢||2 < r for all t and for some r, and there exists v > 0 and v € R? such that for
all t we have

ACEED)

S
[[v]l2

Then, we have

)

Regret <

~%o‘ﬁ

@ Assumption: a sequence is separable by a perfect classifier v with some margin
@ The bound does not depend on T'

26 /28

Perceptron Algorithm: A Proof Sketch

o Let 7 C{1,...,T} be the set of time indices when updated. Thus, Regret = |7|.
@ From the “margin” assumption, there exists v and v for any J such that a margin of v
from any mis-classified sample is larger than ~.
sum of margins

—~= Y oeq Ye(v-xt) v
’Y|~7| < teg oo Zytﬂﬁt

[el

teJ
< Zytxt (1)
teJ
2 2 2
= IS wess —we|| = llwrsall = \/lwrsa) = /lwrsa |2 = [lwol
teJ
= S w2 = ez = |37 e+ g2 — w2 =[S0 2g0wn - @0 + 02
teJ teJ teJ
< Sl < [=170
teg teJ

» (1): Cauchy-Schwarz inequality, i.e., u-v < |lul|||v]|
27/28

Conclusion

@ What we learned
» Halving Algorithm
* Deterministic
* Separable assumption
* Finite H
» Exponential Weighting Algorithm
* Randomized
* No separable assumption
* Finite H
> Perceptron Algorithm
* Deterministic
* Separable assumption
* Infinite H
@ Interesting materials

» Online convex optimization
» Stochastic bandits
» Adversarial bandits

28 /28

