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Motivation

We have considered statistical learning (i.e., learning under the i.i.d. assumption)

However, this assumption can be broken, e.g., distribution shift, price data

Here, we will weaken this assumption.
▶ batch to online: “how data arrives”
▶ statistical to adversarial: “how data are generated”
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Setup

Prediction task: learn to map an example x ∈ X to a label y ∈ Y
Online learning game between a learner and nature

Protocol:

for t = 1, . . . , T do
Learner receives an example xt ∈ X
Learner outputs a prediction pt ∈ Y
Learner receives a true label yt ∈ Y
Learner suffers loss ℓ(yt, pt)
Learner update model parameters

end for

The learner is a function A that returns the current prediction given the full history, i.e.,

pt+1 = A(x1:t, p1:t, y1:t, xt+1)
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Example: Online Binary Classification for Spam Filtering

examples: X := {0, 1}d are boolean feature vectors (presence or absence of a word)

labels: Y := {+1,−1} are whether a document is spam or not

zero-one loss: ℓ(yt, pt) = 1 (yt ̸= pt) is whether the prediction was incorrect
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Remarks

In batch learning, we have a training phase and test phase; but in online learning, they are
interleaved.

The online learning setup allows to use the full history.
▶ The history grows in time by O(T ) and in space by O(T ).
▶ This means that we can use any batch learning algorithm on the history at each time.
▶ However, online algorithms tend to be lightweight, i.e., the amount of work by an algorithm

should not grow with t.

Online learning algorithms have the potential to adapt.
▶ e.g., we have labels on adversarial examples!

For some applications (e.g., spam filtering), examples are generated by an adversary.
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“Goodness” Metric

How to measure the performance of an online learning algorithm?

The cumulative loss of the learner, i.e.,

T∑
t=1

ℓ(yt, pt)

No! In the adversarial setting, the adversary can manipulate data to make the learner
trivially bad loss (e.g., Nature can simulate Learner).

What do you do when your grade is awful? Compare to the best grade in your class!
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Regret

Definition

Regret :=
T∑
t=1

ℓ(yt, pt)︸ ︷︷ ︸
learner

−min
h∈H

T∑
t=1

ℓ(yt, h(xt))︸ ︷︷ ︸
best expert

H is a class of experts.

The best export is a role model of the learner.

We will consider the worst case regret (i.e., labeled examples are generated by an
adversary)
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Negative Result

claim

For any deterministic learner A, there exists an H and the sequence of labeled examples such
that

Regret ≥ T

2
.

Too bad...

Why? Prove under the following setup.
▶ binary classification, i.e., y ∈ {−1,+1}
▶ zero-one loss, i.e., ℓ(yt, pt) := 1 (pt ̸= yt)
▶ the learner is fully deterministic.
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Negative Result: Why? Intuition
An adversary (who has full knowledge of the learner) can choose yt to make it different to
the learner’s choice pt.
Thus, the learner’s cumulative loss is T !
Not yet; how about the best expert’s loss?
Consider two experts, i.e., H := {h−1, h+1} (where hy always predict y).
Thus, we have

ℓ(yt, h−1(xt)) + ℓ(yt, h+1(xt)) = 1 ⇒
T∑
t=1

ℓ(yt, h−1(xt)) +
T∑
t=1

ℓ(yt, h+1(xt)) = T

⇒
T∑
t=1

ℓ(yt, h−1(xt)) ≤
T

2
or

T∑
t=1

ℓ(yt, h+1(xt)) ≤
T

2

⇒ Regret :=
T∑
t=1

ℓ(yt, pt)︸ ︷︷ ︸
=T

−min
h∈H

T∑
t=1

ℓ(yt, h(xt))︸ ︷︷ ︸
≤T

2

≥ T

2
.
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Outline

Halving Algorithm
▶ Deterministic
▶ Separable assumption
▶ Finite H

Exponential Weighting Algorithm
▶ Randomized
▶ No separable assumption
▶ Finite H

Perceptron Algorithm
▶ Deterministic
▶ Separable assumption
▶ Infinite H
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Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert h∗ ∈ H obtains zero cumulative loss (i.e., ℓ(yt, h
∗(xt)) = 0 for all

t ∈ {1, . . . , T}).

This impose restrictions on adversaries.

We saw a similar assumption in PAC learning.

Practical setup? adaptive conformal prediction

12 / 28



Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert h∗ ∈ H obtains zero cumulative loss (i.e., ℓ(yt, h
∗(xt)) = 0 for all

t ∈ {1, . . . , T}).

This impose restrictions on adversaries.

We saw a similar assumption in PAC learning.

Practical setup? adaptive conformal prediction

12 / 28



Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert h∗ ∈ H obtains zero cumulative loss (i.e., ℓ(yt, h
∗(xt)) = 0 for all

t ∈ {1, . . . , T}).

This impose restrictions on adversaries.

We saw a similar assumption in PAC learning.

Practical setup? adaptive conformal prediction

12 / 28



Add an Assumption without Randomization

Assumption (separable)

Assume that the best expert h∗ ∈ H obtains zero cumulative loss (i.e., ℓ(yt, h
∗(xt)) = 0 for all

t ∈ {1, . . . , T}).

This impose restrictions on adversaries.

We saw a similar assumption in PAC learning.

Practical setup? adaptive conformal prediction

12 / 28



Halving Algorithm

Algorithm 1 Halving Algorithm
1: H1 ← H
2: for t = 1, . . . , T do
3: Observe xt

4: Predict ŷt = MajorityVote(Ht, xt)
5: Observe yt
6: if ŷt ̸= yt then
7: Ht+1 ← {h ∈ Ht | h(xt) = yt}
8: else
9: Ht+1 ← Ht

10: end if
11: end for

Y := {−1,+1}
Ht: a set of correct experts.
Under the separable assumption, keep only correct experts.
Due to the separable assumption, we can discard at least half of experts at some
iterations!
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Halving Algorithm: A Regret Bound

Theorem

Under the realizable assumption, for any (xt, yt)
T
t=1, we have

Regret ≤ log2 |H|.

Very strong results due to the separable assumption.
▶ after a finite number of iterations, the predictor never makes mistakes.
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Halving Algorithm: A Regret Bound
Proof Sketch

Let M be the number of mistakes.

For each mistake, at least half of the experts are eliminated, i.e., if ŷi made a mistake,

|Hi+1|
|Hi|

≤ 1

2
⇒ |HT+1|

|H|
≤ 1

2M
.

Due to the realizable assumption, we have

1 ≤ |HT+1|.

M = Regret.
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Remove the Separable Assumption

The separable assumption is too strong

Let’s remove this.

Then, we need a randomization algorithm.

One example: Exponential weighting algorithm.
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Exponential Weighting Algorithm

Algorithm 2 Exponential Weighting Algorithm

1: w1 ← (1/|H|, . . . , 1/|H|)
2: for t = 1, . . . , T do
3: Observe xt
4: Predict ŷt = hit(xt), where it ∼ wt

5: Observe yt
6: Update wt+1(i) ∝ wt(i) exp

{
−ηℓ(hi(xt), yt)

}
for all i ∈ {1, . . . , |H|}

7: end for

H: a set of experts

ℓ(·) ∈ [0, 1]

Due to the randomization in (4), an adversary cannot completely fool the learner.
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Exponential Weighting Algorithm: A Regret Bound

Theorem

For any loss function ℓ with the range of [0, 1], we have

Regret :=
T∑
t=1

Eh∼ptℓ(yt, h(xt))−min
h∈H

T∑
t=1

ℓ(yt, h(xt)) ≤
√

T ln |H|

if η =

√
8 ln |H|

T .

No separable assumption.

“learnable”, i.e., Regret
T =

√
ln |H|
T with a mild assumption on loss.

Still we assume a finite set of experts.
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Exponential Weighting Algorithm I
Proof sketch

Definitions:

Li
t :=

∑t
s=1 ℓ(hi(xs), ys): the cumulative loss of hi up to t

Wt :=
∑|H|

i=1 exp{−ηLi
t}: a “potential value” at time t

W0 := |H|: a “potential value” at time 0

Steps:
1 The lower bound of the “log-potential difference”:

ln
WT

W0
= ln

|H|∑
i=1

exp{−ηLi
T } − ln |H| ≥ ln

(
max

i∈{1,...,|H|}
exp{−ηLi

T }
)
− ln |H| = −η min

i∈{1,...,|H|}
Li

T − ln |H|.
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Exponential Weighting Algorithm II
Proof sketch

2 The upper bound of the “log-potential difference”:

ln
Wt

Wt−1
= ln

∑|H|
i=1 exp{−ηL

i
t}∑|H|

i=1 exp{−ηLi
t−1}

= ln

∑|H|
i=1 exp{−ηℓ(h

i
t(xt), yt)} exp{−ηLi

t−1}∑|H|
i=1 exp{−ηLi

t−1}

= lnEit∼wt exp
{
−ηℓ(hit(xt), yt)

}
≤ −ηEit∼wtℓ(h

it(xt), yt) +
η2

8

⇒ ln
WT

W0
≤ −η

T∑
t=1

Eit∼wtℓ(h
it(xt), yt) +

η2T

8

▶ For any s ∈ R and a random variable X ∈ [a, b], lnEesX ≤ sEX + s2(b−a)2

8 .
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Exponential Weighting Algorithm III
Proof sketch

3 Combine the lower and upper bounds:

−η min
i∈{1,...,|H|}

Li
T − ln |H| ≤ −η

T∑
t=1

Eit∼wtℓ(h
it(xt), yt) +

η2T

8
⇒

T∑
t=1

Eit∼wtℓ(h
it(xt), yt)− min

i∈{1,...,|H|}
Li
T ≤

ηT

8
+

ln |H|
η
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Algorithms So Far

Halving Algorithm
▶ Deterministic
▶ Separable assumption
▶ Finite H

Exponential Weighting Algorithm
▶ Randomized
▶ No separable assumption
▶ Finite H

What’s the next?
▶ Remove the assumption on the finiteness of H (under some assumptions)
▶ Deterministic
▶ Separable assumption (with some margin)
▶ Infinite H
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Perceptron: History
TLDR: Father of Neural Networks!

(a) Perceptron (b) Mark I Perceptron machine

Invented in 1943 by Warren McCulloch and Walter Pitts.

Firstly implemented in 1958 by Frank Rosenblatt(!)
23 / 28



Perceptron Algorithm: Setup

D: change over time but require the separable assumption.

H: linear functions without bias terms – additional assumption

ℓ: 0-1 loss for classification

24 / 28



Perceptron Algorithm

Algorithm 4 Perceptron Algorithm
1: w1 ← w0 := 0
2: for t = 1, . . . , T do
3: Receives an example xt ∈ X
4: ŷt ← sign(wt · xt)
5: Receives a true label yt ∈ Y
6: if ŷt ̸= yt then
7: wt+1 ← wt + ytxt
8: else
9: wt+1 ← wt

10: end if
11: end for

25 / 28



Perceptron Algorithm: A Regret Bound

Theorem

Suppose ∥xt∥2 ≤ r for all t and for some r, and there exists γ > 0 and v ∈ Rd such that for
all t we have

γ ≤ yt(v · xt)
∥v∥2

.

Then, we have

Regret ≤ r2

γ2
.

Assumption: a sequence is separable by a perfect classifier v with some margin

The bound does not depend on T
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Perceptron Algorithm: A Proof Sketch
Let J ⊆ {1, . . . , T} be the set of time indices when updated. Thus, Regret = |J |.
From the “margin” assumption, there exists γ and v for any J such that a margin of v
from any mis-classified sample is larger than γ.

sum of margins︷︸︸︷
γ|J | ≤

∑
t∈J yt(v · xt)

∥v∥ =
v

∥v∥ ·
∑
t∈J

ytxt

≤

∥∥∥∥∥∑
t∈J

ytxt

∥∥∥∥∥ (1)

=

∥∥∥∥∥∑
t∈J

wt+1 − wt

∥∥∥∥∥ = ∥wT+1∥ =
√
∥wT+1∥2 =

√
∥wT+1∥2 − ∥w0∥2

=

√∑
t∈J

∥wt+1∥2 − ∥wt∥2 =

√∑
t∈J

∥wt + ytxt∥2 − ∥wt∥2 =

√∑
t∈J

2ytwt · xt + ∥xt∥2

≤
√∑

t∈J

∥xt∥2 ≤
√∑

t∈J

r2 = r
√
|J |.

▶ (1): Cauchy-Schwarz inequality, i.e., u · v ≤ ∥u∥∥v∥
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Conclusion

What we learned
▶ Halving Algorithm

⋆ Deterministic
⋆ Separable assumption
⋆ Finite H

▶ Exponential Weighting Algorithm
⋆ Randomized
⋆ No separable assumption
⋆ Finite H

▶ Perceptron Algorithm
⋆ Deterministic
⋆ Separable assumption
⋆ Infinite H

Interesting materials
▶ Online convex optimization
▶ Stochastic bandits
▶ Adversarial bandits
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