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Motivation

1 σ-algebra? distribution? induced distribution? measurable space v.s. probability space?

2 Are we using statistical terms correctly?

3 Why is this definition valid?

Definition

A random variable X is said to have a Binomial(n, p) distribution if

P(X = m) :=

(
n

m

)
pm(1− p)n−m.

4 Rigorus proofs
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Measure?

The meaning of “measure” in “measure theory” is the same as the “measure” in the following:

How to measure the height of a boy?

How to measure the legnth of the width of a table?

How to measure the size of an area?

How to measure the size of a discrete set?

We will learn the rigorous definition of “measure”.
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Algebra

Definition (Algebra)

Let Ω be a nonempty set. A set F is an algebra of sets on Ω if it is a nonempty collection of
subsets of a set Ω that satisfies

1 if A ∈ F , then Ac ∈ F (i.e., F is closed under complements), and

2 if Ai, . . . , An ∈ F , then ∪n
i=1Ai ∈ F (i.e., F is closed under finite unions).

Mathematicians decided to call a set of sets with two properties an algebra.

4 / 20



σ-algebra

Definition (σ-algebra)

Let Ω be a nonempty set. A set F is a σ-algebra of sets on Ω if it is a nonempty collection of
subsets of a set Ω that satisfies

1 if A ∈ F , then Ac ∈ F (i.e., F is closed under complements), and

2 if Ai ∈ F is a countable sequence of sets, then ∪iAi ∈ F (i.e., F is closed under
countable unions).

These implies that a σ-algebra is closed under countable intersections
(i.e., Ai ∈ F =⇒ ∩iAi = (∪iA

c
i )

c ∈ F).

The above two properties are minimum requirements to define a “measure” (e.g., a ruler).
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Measurable Space

Definition

A tuple (Ω,F) is a measurable space if Ω is a non-empty set and F is a σ-algebra.

A measurable space is a space on which we can put a “measure”.
▶ A σ-algebra F is a good enough set to put a “measure”
▶ It is not a “measure” space – a “measure” is not yet defined.
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Wait! Why Do We Need These Complicatd Definitions?

A non-measurable set is a set which cannot be asigned a meaningful “volume”.

There exists a non-measurable subset of R in Zermelo–Fraenkel set theory.

σ-algebra is suffficiently huge collection to define a measure.
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Measure

Definition

A measure µ on a measureble space (Ω,F) is a function µ : F → R≥0 where

1 µ(∅) = 0 and

2 if Ai ∈ F is a countable sequence of disjoint sets, then

µ(∪iAi) =
∑
i

µ(Ai).

If µ is a measure on a measurable space (Ω,F), then (Ω,F , µ) is a measure space.

If µ(Ω) = 1, we call µ a probability measure, denoted by P.
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Probability Space

Definition

A probability space is a measure space (Ω,F ,P) with a probability measure P, where

Ω is a set of “outcomes”,

F is a set of “events”, and

P : F → [0, 1] is a function that assigns probabilities to events.
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Properties of A Measure

The properties of a measure is derived from the definition of the measure.

Theorem

Let µ : F → R be a measure on (Ω,F).

1 (Monotonicity) If A ⊆ B, then µ(A) ≤ µ(B).

2 (Subadditivity) If A ⊆ ∪∞
m=1Am, then µ(A) ≤

∑∞
m=1 µ(Am).

3 . . .

Proof (Monotonicity).

Let B −A = B ∩Ac be the difference of the two sets. Using + to denote disjoint union,
B = A+ (B −A) so

µ(B) = µ(A) + µ(B −A) ≥ µ(A)

due to the definition of a measure.
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Measure On The Real Line
How to design a measure? A measure function defines a measure.

Definition

A Stieltjes measure function is a function F : R → R where

1 F is non-decreasing and

2 F is right-continuous, i.e.,
lim
y↓x

F (y) = F (x).

Thomas Joannes Stieltjes
(known for Riemann–Stieltjes integral)
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Measure On The Real Line

Can we define a measure by using the Stieltjes measure function?

Theorem

Given a Stieltjes measure function F , there is a unique measure µ on (R,R) with

µ((a, b]) = F (b)− F (a).

When F (x) = x, the resulting measure is called Lebesgue measure.

e.g., a length of an interval is a measure.
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Random Variables

Definition (measurable map)

A function X : Ω → S is a measurable map from a measurable space (Ω,F) to a measurable
space (S,S) if

X−1(B) := {ω ∈ Ω | X(w) ∈ B} ∈ F for all B ∈ S.

Connect two measurable spaces – don’t need to define measures again.

Help to reuse a measure defined on the measurable space (Ω,F).
▶ The measure on the new space is well-defined based on the measure on the old space.

When (S,S) = (Rd,Rd),
▶ if d > 1, then X is called a random vector and
▶ if d = 1, then X is called a random variable.

If Ω is a discrete probability space, then any function X : Ω → R is a random variable.
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Distribution

Definition (distribution)

An induced probability measure µ on (R,R) by a random variable X : (Ω,F) → (R,R) is
called a distribution, i.e., for any B ∈ R

µ(B) := P(X−1(B)).

Redefine a measure over an easy space (i.e., R) and call it a “distribution”.
▶ A distribution is a measure.

A distribution depends on an random variable.

Is µ a probability measure? Let’s only check the second property of a measure. For any
disjoint sets Bi,

µ(∪iBi) = P(X
−1(∪iBi)) = P(∪iX

−1(Bi)) =
∑
i

P(X−1(Bi)) =
∑
i

µ(Bi).

How to define a probability measure? One way is...
▶ Define a simple “distribution function” over R (e.g., the Gaussian distribution).

14 / 20



Distribution Functions

Definition

A (usual) distribution function of a random variable X : R → R is the function F : R → R
defined by

F (x) := P(X ≤ x).

a.k.a. a cumulative distribution function (CDF)

In the real line, due to the monotonicity of a measure, CDF is enough to define a measure.
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Density Functions

Definition

X has a density function fX if a distribution function F (x) = P(X ≤ x) has the form

F (x) =

∫ x

−∞
fX(y)dy.

Normal distribution: fX(x) := 1
σ
√
2π
e−

1
2(

x−µ
σ )

2

Once a density function is defined, the probability measure is indirectly defined.
▶ We don’t need to define the probability measure in the original space directly (thanks to

σ-algebra, measure, measurable map, ...)
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More Facts on Random Variables

Theorem

If X1, . . . , Xn are random variables and f : (Rn,Rn) → (R,R) is measurable, then
f(X1, . . . , Xn) is a random variable.

Theorem

If X1, . . . , Xn are random variables, then X1 + · · ·+Xn is a random variable.

Theorem (product measure)

If (Ωi,Fi, µi) for i = 1, . . . , n are measure spaces and Ω := Ω1 × . . .Ωn, there is a unique
measure µ on (

∏
iΩi,

∏
iFi) where

µ(A1 × · · · ×An) =
∏
i

µi(Ai)

for any Ai ∈ Fi.
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Use Case: Binomial Distribution

Definition

A random variable X is said to have a Binomial(n, p) distribution if

P(X = m) = fX(m) :=

(
n

m

)
pm(1− p)n−m.

The Binomial random variable is a sum of Bernoulli random variables.

It is usually explained via a sequence of coin flipping.

We define a probability measure on the original space.

How can it be redefined over N?
Why do we have this Binomial distribution?

▶ We will interpret this in a measure-theoretic perspective.
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Use Case: Binomial Distribution I

Proof Sketch:
1 We have a probability space (Ω,F ,P0).

▶ Ω := {“S”, “F”}
▶ P0(∅) = 0, P0({“S”}) = p, P0({“F”}) = 1− p, P0({“S”, “F”}) = 1

2 We have probability spaces (Si,Si,Pi).
▶ Si := {0, 1}
▶ Consider a Bernoulli random variable where Xi(“S”) = 1 and Xi(“F”) = 0.
▶ Pi(Xi = 1) = p and Pi(Xi = 0) = 1− p.

3 We have a probability space (S×,S×,P×).
▶ S× :=

∏
i Si, S× :=

∏
i Si, and P× :=

∏
iPi.

4 We have a probability space (S,S,P).
▶ S := {0, 1, . . . , n}
▶ Consider a new random variable X : S1 × · · · × Sn → S, where X :=

∑n
i=1 Xi and

X1, . . . , Xn are independent and identically distributed.
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Use Case: Binomial Distribution II

▶ P(X = m)? Let Am ⊆ S1 × · · · × Sn be a bit string with m ones.

P(X = m) = P×

( ⋃
A∈Am

{A}

)
=
∑

A∈Am

P× ({A})

=
∑

A∈Am

n∏
i=1

Pi ({Ai})

=
∑

A∈Am

n∏
i=1

P0 ({“S”} if Ai = 1 else {“F”})

=
∑

A∈Am

pm(1− p)n−m =

(
n

m

)
pm(1− p)n−m.
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